我使用LDA为2个文本文档构建主题模型,比如A和B.文档A与计算机科学高度相关,文档B与地理科学高度相关。然后我使用这个命令训练了一个lda:
text<- c(A,B) # introduced above
r <- Corpus(VectorSource(text)) # create corpus object
r <- tm_map(r, tolower) # convert all text to lower case
r <- tm_map(r, removePunctuation)
r <- tm_map(r, removeNumbers)
r <- tm_map(r, removeWords, stopwords("english"))
r.dtm <- TermDocumentMatrix(r, control = list(minWordLength = 3))
my_lda <- LDA(r.dtm,2)
现在我想用my_lda来预测一个新文件的背景说C,我想知道它是否与计算机科学或地理科学有关。我知道我是否使用此代码进行预测
x<-C# a new document (a long string) introduced above for prediction
rp <- Corpus(VectorSource(x)) # create corpus object
rp <- tm_map(rp, tolower) # convert all text to lower case
rp <- tm_map(rp, removePunctuation)
rp <- tm_map(rp, removeNumbers)
rp <- tm_map(rp, removeWords, stopwords("english"))
rp.dtm <- TermDocumentMatrix(rp, control = list(minWordLength = 3))
test.topics <- posterior(my_lda,rp.dtm)
它会给我一个标签1或2,我不知道1或2代表什么......我怎么能意识到它是否意味着计算机科学相关或地理科学相关?
答案 0 :(得分:2)
您可以从LDA主题模型中提取最可能的术语,并将这些黑盒数字名称替换为您想要的多个名称。您的示例不可重现,但此处的示例说明了如何执行此操作:
> library(topicmodels)
> data(AssociatedPress)
>
> train <- AssociatedPress[1:100]
> test <- AssociatedPress[101:150]
>
> train.lda <- LDA(train,2)
>
> #returns those black box names
> test.topics <- posterior(train.lda,test)$topics
> head(test.topics)
1 2
[1,] 0.57245696 0.427543038
[2,] 0.56281568 0.437184320
[3,] 0.99486888 0.005131122
[4,] 0.45298547 0.547014530
[5,] 0.72006712 0.279932882
[6,] 0.03164725 0.968352746
> #extract top 5 terms for each topic and assign as variable names
> colnames(test.topics) <- apply(terms(train.lda,5),2,paste,collapse=",")
> head(test.topics)
percent,year,i,new,last new,people,i,soviet,states
[1,] 0.57245696 0.427543038
[2,] 0.56281568 0.437184320
[3,] 0.99486888 0.005131122
[4,] 0.45298547 0.547014530
[5,] 0.72006712 0.279932882
[6,] 0.03164725 0.968352746
> #round to one topic if you'd prefer
> test.topics <- apply(test.topics,1,function(x) colnames(test.topics)[which.max(x)])
> head(test.topics)
[1] "percent,year,i,new,last" "percent,year,i,new,last" "percent,year,i,new,last"
[4] "new,people,i,soviet,states" "percent,year,i,new,last" "new,people,i,soviet,states"