我对使用matlab进行决策树的交叉验证存在问题。
data_label={'Revenu','Propriete','Credit ','Classe'};
my_data={'Eleve','Superieur','Non','C1';
'Eleve','Superieur','Oui','C2';
'Eleve','Superieur','Non','C1';
'Eleve','Inferieur','Oui','C2';
'Moyen','Superieur','Non','C1';
'Moyen','Superieur','Oui','C2';
'Moyen','Inferieur','Non','C2';
'Moyen','Inferieur','Oui','C2';
'Faible','Inferieur','Non','C3';
'Faible','Inferieur','Oui','C3'};
这是交叉验证的代码:
indices = crossvalind('Kfold',my_data(:,end),10);
cp = classperf(my_data(:,end));
for i = 1:10
test = (indices == i); train = ~test;
class = classify(my_data(test,:),my_data(train,:),my_data(train,:));
classperf(cp,class,test)
end
cp.ErrorRat
matlab给我回复此错误
Index exceeds matrix dimensions.
Error in test (line 23)
class = classify(my_data(tests,:),my_data(train,:),data_label(train,:));