我在Matlab中看到了帮助,但他们提供了一个示例,但没有解释如何使用'classregtree'函数中的参数。任何帮助解释'classregtree'与其参数的使用将不胜感激。
答案 0 :(得分:34)
函数classregtree的文档页面不言自明......
让我们回顾一下分类树模型的一些最常见的参数:
一个完整的例子来说明这个过程:
%# load data
load carsmall
%# construct predicting attributes and target class
vars = {'MPG' 'Cylinders' 'Horsepower' 'Model_Year'};
x = [MPG Cylinders Horsepower Model_Year]; %# mixed continous/discrete data
y = cellstr(Origin); %# class labels
%# train classification decision tree
t = classregtree(x, y, 'method','classification', 'names',vars, ...
'categorical',[2 4], 'prune','off');
view(t)
%# test
yPredicted = eval(t, x);
cm = confusionmat(y,yPredicted); %# confusion matrix
N = sum(cm(:));
err = ( N-sum(diag(cm)) ) / N; %# testing error
%# prune tree to avoid overfitting
tt = prune(t, 'level',3);
view(tt)
%# predict a new unseen instance
inst = [33 4 78 NaN];
prediction = eval(tt, inst) %# pred = 'Japan'
上述classregtree
类已过时,并被R2011a中的ClassificationTree
和RegressionTree
类取代(请参阅fitctree
和fitrtree
函数,new在R2014a)。
以下是使用新函数/类的更新示例:
t = fitctree(x, y, 'PredictorNames',vars, ...
'CategoricalPredictors',{'Cylinders', 'Model_Year'}, 'Prune','off');
view(t, 'mode','graph')
y_hat = predict(t, x);
cm = confusionmat(y,y_hat);
tt = prune(t, 'Level',3);
view(tt)
predict(tt, [33 4 78 NaN])