我正在使用Tensorflow for Poets教程对图像进行分类。我使用下面的代码对图像进行分类,但是想要将numpy数组作为图像而不是jpeg,代码必须如何改变?
import tensorflow as tf
import sys
# change this as you see fit
image_path = sys.argv[1]
# Read in the image_data
image_data = tf.gfile.FastGFile(image_path, 'rb').read()
# Loads label file, strips off carriage return
label_lines = [line.rstrip() for line
in tf.gfile.GFile("/tf_files/retrained_labels.txt")]
# Unpersists graph from file
with tf.gfile.FastGFile("/tf_files/retrained_graph.pb", 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(graph_def, name='')
with tf.Session() as sess:
# Feed the image_data as input to the graph and get first prediction
softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')
predictions = sess.run(softmax_tensor, \
{'DecodeJpeg/contents:0': image_data})
# Sort to show labels of first prediction in order of confidence
top_k = predictions[0].argsort()[-len(predictions[0]):][::-1]
for node_id in top_k:
human_string = label_lines[node_id]
score = predictions[0][node_id]
print('%s (score = %.5f)' % (human_string, score))
image_data = tf.gfile.FastGFile(image_path, 'rb').read()
- 如果我没有阅读文件,我想我不需要这个。
predictions = sess.run(softmax_tensor, {'DecodeJpeg/contents:0': image_data})
- 我知道我不需要覆盖feed_dict的这个方面,但我该怎么办呢?
总的来说,我怎样才能确保代表图像的nparray能够正确用于预测?
答案 0 :(得分:2)
谢谢大家,我找到了答案:
假设我有一个名为image
的大小为(100,132,3)的三维numpy数组。
我所要做的就是使用'DecodeJpeg:0
而不是DecodeJpeg/contents:0
将其传递到softmax分类器中......
predictions = sess.run(softmax_tensor, {'DecodeJpeg:0': image})
......你有它