我编写了一个名为Node的类,其中包含一些用于创建二叉搜索树的函数。除了应该计算BST高度的函数height()之外,所有函数都能正常工作。考虑到我没有平衡树,它的回报率与我预期的相比非常小。我期待的数字接近于N,其中N是我在树中输入的数字量。这是代码:
from __future__ import print_function
import random
class Node(object):
def __init__(self, data):
self.left = None
self.right = None
self.data = data
def insert(self, data):
if self.data:
if data < self.data:
if self.left is None:
self.left = Node(data)
else:
self.left.insert(data)
elif data > self.data:
if self.right is None:
self.right = Node(data)
else:
self.right.insert(data)
else:
self.data = data
def lookup(self, data, parent=None):
if data < self.data:
if self.left is None:
return None, None
return self.left.lookup(data, self)
elif data > self.data:
if self.right is None:
return None, None
return self.right.lookup(data, self)
else:
return self, parent
def delete(self, data):
node, parent = self.lookup(data)
if node is not None:
children_count = node.children_count()
if children_count == 0:
if parent:
if parent.left is node:
parent.left = None
else:
parent.right = None
else:
self.data = None
elif children_count == 1:
if node.left:
n = node.left
else:
n = node.right
if parent:
if parent.left is node:
parent.left = n
else:
parent.right = n
else:
self.left = n.left
self.right = n.right
self.data = n.data
else:
parent = node
successor = node.right
while successor.left:
parent = successor
successor = successor.left
node.data = successor.data
if parent.left == successor:
parent.left = successor.right
else:
parent.right = successor.right
def compare_trees(self, node):
if node is None:
return False
if self.data != node.data:
return False
res = True
if self.left is None:
if node.left:
return False
else:
res = self.left.compare_trees(node.left)
if res is False:
return False
if self.right is None:
if node.right:
return False
else:
res = self.right.compare_trees(node.right)
return res
def print_tree(self):
if self.left:
self.left.print_tree()
print(self.data, end=" ")
if self.right:
self.right.print_tree()
def height(self, root):
if root is None:
return 0
else:
return max(self.height(root.left), self.height(root.right)) + 1
random.seed(3)
bst = Node(random.randint(1,1000))
for i in range(1,80000,1):
bst.insert(random.randint(1,1000))
print(bst.height(bst))
答案 0 :(得分:6)
你的答案很低,因为你总是只插入从1到1000的数字,所以现有的数字总是保持不变,你认为你插入的是1,80000个数字,但实际上是因为从1到1随机生成相同的数字1000你实际上只插入1000个值,从1到1000最多。
错误代码
bst = Node(random.randint(1,1000))
for i in range(1,80000,1):
bst.insert(random.randint(1,1000))
print(bst.height(bst))
<强>修改强>
bst = Node(random.randint(1,80000))
for i in range(1,80000,1):
bst.insert(random.randint(1,80000))
print(bst.height(bst))
您的代码工作正常,您可以执行下面的代码并使用下面的图片进行检查
bst = Node(7)
list1 = [3,11,1,5,9,13,4,6,8,12,14,8.5]
for i in list1:
bst.insert(i)
print(bst.height(bst))
bst.print_tree()
<强>输出继电器强>
5
1 3 4 5 6 7 8 8.5 9 11 12 13 14
答案 1 :(得分:0)
您应该声明为排序数组以获取二叉搜索树的最大高度。 但这可能不适用于1000或10,000的较大数字。它适用于500个元素,因为你的插入递归可能会超过python中的最大递归深度
UPTO 500
bst = Node(0)
list1 = list(range(1,500,1))
for i in list1:
bst.insert(i)
print(bst.height(bst))
<强>输出强>
499
1000个元素
bst = Node(0)
list1 = list(range(1,500,1))
for i in list1:
bst.insert(i)
print(bst.height(bst))
<强>输出强>
self.right.insert(data)
self.right = Node(data)
RecursionError: maximum recursion depth exceeded