我的程序运行时,我通常用pdb
检查我的变量。现在,我希望通过在优化运行时检查变量来调试scipy.optimize.minimize
。
result = scipy.optimize.minimize(fun, x0, method='dogleg')
我尝试使用callback
选项,但它不能让我访问优化的内部参数,例如雅可比矩阵等。
返回的result
确实包含了我需要的所有信息,但它只在整个优化结束时返回,但我需要(中间)结果作为优化运行。
所以我的问题是:如何在scipy.optimize.minimize
运行时返回中间优化参数(例如雅可比)?
答案 0 :(得分:2)
直接编辑scipy的本地副本,在打印输出中查看或直接登录源文件。你说这只是为了调试,无论如何。您可以修改回调以传递更多信息。或者,您可以将pdb.set_trace()
直接插入到优化代码中,并以交互方式查看。要查找您应该查找的文件,请找到该模块的位置:
scipy.optimize.__file__
然后跟踪。您可能希望删除任何闲置的.pyc
个文件。在当前scipy
中,它位于here in _minimize_trust_region
。
您可以使用内省退回框架并查找局部变量,而无需直接修改scipy源。使用框架黑客是脆弱的,并且依赖于实现,所以通过各种方式试验它以进行调试,但不要将这样的东西放到任何实际的库代码中。
from scipy.optimize import minimize
import inspect
def fun(x):
return (x - 42)**2
def jac(x):
return 2*(x - 42)
def hess(x):
return [[2]]
def vanilla_cb(x):
print(x)
def callback_on_crack(x):
print(inspect.currentframe().f_back.f_locals)
print(x)
使用普通回调,从x0=99
开始,我们在6次迭代后达到最小值42:
>>> minimize(fun,x0=99,method='dogleg',jac=jac,hess=hess,callback=vanilla_cb)
[ 98.]
[ 96.]
[ 92.]
[ 84.]
[ 68.]
[ 42.]
使用加强回调,你可以看到词典中的所有好东西!
>>> minimize(fun,99,method='dogleg',jac=jac,hess=hess,callback=callback_on_crack)
{'disp': False, 'unknown_options': {}, 'm': <scipy.optimize._trustregion_dogleg.DoglegSubproblem object at 0xdc9d10>, 'm_proposed': <scipy.optimize._trustregion_dogleg.DoglegSubproblem object at 0xdc9d10>, 'return_all': False, 'hess': <function function_wrapper at 0x1248938>, 'callback': <function callback_on_crack at 0x12487d0>, 'nhessp': [0], 'njac': [1], 'predicted_reduction': array([ 113.]), 'subproblem': <class 'scipy.optimize._trustregion_dogleg.DoglegSubproblem'>, 'maxiter': 200, 'warnflag': 0, 'gtol': 0.0001, 'args': (), 'initial_trust_radius': 1.0, 'hits_boundary': True, 'trust_radius': 2.0, 'predicted_value': array([ 3136.]), 'rho': array([ 1.]), 'x': array([ 98.]), 'nhess': [1], 'x0': array([ 99.]), 'hessp': None, 'k': 0, 'actual_reduction': array([ 113.]), 'jac': <function function_wrapper at 0x12488c0>, 'p': array([-1.]), 'eta': 0.15, 'fun': <function function_wrapper at 0x1248848>, 'nfun': [2], 'max_trust_radius': 1000.0, 'x_proposed': array([ 98.])}
[ 98.]
{'disp': False, 'unknown_options': {}, 'm': <scipy.optimize._trustregion_dogleg.DoglegSubproblem object at 0xdc9d90>, 'm_proposed': <scipy.optimize._trustregion_dogleg.DoglegSubproblem object at 0xdc9d90>, 'return_all': False, 'hess': <function function_wrapper at 0x1248938>, 'callback': <function callback_on_crack at 0x12487d0>, 'nhessp': [0], 'njac': [2], 'predicted_reduction': array([ 220.]), 'subproblem': <class 'scipy.optimize._trustregion_dogleg.DoglegSubproblem'>, 'maxiter': 200, 'warnflag': 0, 'gtol': 0.0001, 'args': (), 'initial_trust_radius': 1.0, 'hits_boundary': True, 'trust_radius': 4.0, 'predicted_value': array([ 2916.]), 'rho': array([ 1.]), 'x': array([ 96.]), 'nhess': [2], 'x0': array([ 99.]), 'hessp': None, 'k': 1, 'actual_reduction': array([ 220.]), 'jac': <function function_wrapper at 0x12488c0>, 'p': array([-2.]), 'eta': 0.15, 'fun': <function function_wrapper at 0x1248848>, 'nfun': [3], 'max_trust_radius': 1000.0, 'x_proposed': array([ 96.])}
[ 96.]
{'disp': False, 'unknown_options': {}, 'm': <scipy.optimize._trustregion_dogleg.DoglegSubproblem object at 0xdc9e50>, 'm_proposed': <scipy.optimize._trustregion_dogleg.DoglegSubproblem object at 0xdc9e50>, 'return_all': False, 'hess': <function function_wrapper at 0x1248938>, 'callback': <function callback_on_crack at 0x12487d0>, 'nhessp': [0], 'njac': [3], 'predicted_reduction': array([ 416.]), 'subproblem': <class 'scipy.optimize._trustregion_dogleg.DoglegSubproblem'>, 'maxiter': 200, 'warnflag': 0, 'gtol': 0.0001, 'args': (), 'initial_trust_radius': 1.0, 'hits_boundary': True, 'trust_radius': 8.0, 'predicted_value': array([ 2500.]), 'rho': array([ 1.]), 'x': array([ 92.]), 'nhess': [3], 'x0': array([ 99.]), 'hessp': None, 'k': 2, 'actual_reduction': array([ 416.]), 'jac': <function function_wrapper at 0x12488c0>, 'p': array([-4.]), 'eta': 0.15, 'fun': <function function_wrapper at 0x1248848>, 'nfun': [4], 'max_trust_radius': 1000.0, 'x_proposed': array([ 92.])}
[ 92.]
{'disp': False, 'unknown_options': {}, 'm': <scipy.optimize._trustregion_dogleg.DoglegSubproblem object at 0xdc9dd0>, 'm_proposed': <scipy.optimize._trustregion_dogleg.DoglegSubproblem object at 0xdc9dd0>, 'return_all': False, 'hess': <function function_wrapper at 0x1248938>, 'callback': <function callback_on_crack at 0x12487d0>, 'nhessp': [0], 'njac': [4], 'predicted_reduction': array([ 736.]), 'subproblem': <class 'scipy.optimize._trustregion_dogleg.DoglegSubproblem'>, 'maxiter': 200, 'warnflag': 0, 'gtol': 0.0001, 'args': (), 'initial_trust_radius': 1.0, 'hits_boundary': True, 'trust_radius': 16.0, 'predicted_value': array([ 1764.]), 'rho': array([ 1.]), 'x': array([ 84.]), 'nhess': [4], 'x0': array([ 99.]), 'hessp': None, 'k': 3, 'actual_reduction': array([ 736.]), 'jac': <function function_wrapper at 0x12488c0>, 'p': array([-8.]), 'eta': 0.15, 'fun': <function function_wrapper at 0x1248848>, 'nfun': [5], 'max_trust_radius': 1000.0, 'x_proposed': array([ 84.])}
[ 84.]
{'disp': False, 'unknown_options': {}, 'm': <scipy.optimize._trustregion_dogleg.DoglegSubproblem object at 0xdc9e10>, 'm_proposed': <scipy.optimize._trustregion_dogleg.DoglegSubproblem object at 0xdc9e10>, 'return_all': False, 'hess': <function function_wrapper at 0x1248938>, 'callback': <function callback_on_crack at 0x12487d0>, 'nhessp': [0], 'njac': [5], 'predicted_reduction': array([ 1088.]), 'subproblem': <class 'scipy.optimize._trustregion_dogleg.DoglegSubproblem'>, 'maxiter': 200, 'warnflag': 0, 'gtol': 0.0001, 'args': (), 'initial_trust_radius': 1.0, 'hits_boundary': True, 'trust_radius': 32.0, 'predicted_value': array([ 676.]), 'rho': array([ 1.]), 'x': array([ 68.]), 'nhess': [5], 'x0': array([ 99.]), 'hessp': None, 'k': 4, 'actual_reduction': array([ 1088.]), 'jac': <function function_wrapper at 0x12488c0>, 'p': array([-16.]), 'eta': 0.15, 'fun': <function function_wrapper at 0x1248848>, 'nfun': [6], 'max_trust_radius': 1000.0, 'x_proposed': array([ 68.])}
[ 68.]
{'disp': False, 'unknown_options': {}, 'm': <scipy.optimize._trustregion_dogleg.DoglegSubproblem object at 0xdc9d50>, 'm_proposed': <scipy.optimize._trustregion_dogleg.DoglegSubproblem object at 0xdc9d50>, 'return_all': False, 'hess': <function function_wrapper at 0x1248938>, 'callback': <function callback_on_crack at 0x12487d0>, 'nhessp': [0], 'njac': [6], 'predicted_reduction': array([ 676.]), 'subproblem': <class 'scipy.optimize._trustregion_dogleg.DoglegSubproblem'>, 'maxiter': 200, 'warnflag': 0, 'gtol': 0.0001, 'args': (), 'initial_trust_radius': 1.0, 'hits_boundary': False, 'trust_radius': 32.0, 'predicted_value': array([ 0.]), 'rho': array([ 1.]), 'x': array([ 42.]), 'nhess': [6], 'x0': array([ 99.]), 'hessp': None, 'k': 5, 'actual_reduction': array([ 676.]), 'jac': <function function_wrapper at 0x12488c0>, 'p': array([-26.]), 'eta': 0.15, 'fun': <function function_wrapper at 0x1248848>, 'nfun': [7], 'max_trust_radius': 1000.0, 'x_proposed': array([ 42.])}
[ 42.]