Javascript Fibonacci nth Term Optimization

时间:2009-01-09 00:08:43

标签: javascript algorithm optimization fibonacci

我最近对算法产生了兴趣,由于其简单性,斐波纳契序列引起了我的注意。

我已经设法将一些东西放在javascript中,在网上阅读大量信息后,在不到15毫秒的时间内计算出斐波那契序列中的第n个词。它上升到1476 ... 1477是无穷大,1478是NaN(根据javascript!)

我为代码本身感到自豪,除了它是一个彻头彻尾的怪物。

所以这是我的问题: A)有更快的方法来计算序列吗? B)是否有更快/更小的方法来乘以两个矩阵?

以下是代码:

//Fibonacci sequence generator in JS
//Cobbled together by Salty
m = [[1,0],[0,1]];
odd = [[1,1],[1,0]];
function matrix(a,b) {
    /* 
        Matrix multiplication
        Strassen Algorithm
        Only works with 2x2 matrices.
    */
    c=[[0,0],[0,0]];
    c[0][0]=(a[0][0]*b[0][0])+(a[0][1]*b[1][0]);
    c[0][1]=(a[0][0]*b[0][1])+(a[0][1]*b[1][1]);
    c[1][0]=(a[1][0]*b[0][0])+(a[1][1]*b[1][0]);
    c[1][1]=(a[1][0]*b[0][1])+(a[1][1]*b[1][1]);
    m1=(a[0][0]+a[1][1])*(b[0][0]+b[1][1]);
    m2=(a[1][0]+a[1][1])*b[0][0];
    m3=a[0][0]*(b[0][1]-b[1][1]);
    m4=a[1][1]*(b[1][0]-b[0][0]);
    m5=(a[0][0]+a[0][1])*b[1][1];
    m6=(a[1][0]-a[0][0])*(b[0][0]+b[0][1]);
    m7=(a[0][1]-a[1][1])*(b[1][0]+b[1][1]);
    c[0][0]=m1+m4-m5+m7;
    c[0][1]=m3+m5;
    c[1][0]=m2+m4;
    c[1][1]=m1-m2+m3+m6;
    return c;
}
function fib(n) {
    mat(n-1);
    return m[0][0];
}
function mat(n) {
    if(n > 1) {
        mat(n/2);
        m = matrix(m,m);
    }
    m = (n%2<1) ? m : matrix(m,odd);
}
alert(fib(1476)); //Alerts 1.3069892237633993e+308

矩阵函数有两个参数:a和b,并返回a * b,其中a和b是2x2数组。 哦,并且在旁注中,发生了一件神奇的事情......我正在将Strassen算法转换为JS数组表示法,并且它在我第一次尝试时起作用了!太棒了,对吧? :P

如果您设法找到更简单的方法,请提前致谢。

10 个答案:

答案 0 :(得分:11)

不要推测,基准:

编辑我使用我在其他答案中提到的优化乘法函数添加了我自己的矩阵实现。这导致了一个主要的加速,但即使是带有循环的矩阵乘法的vanilla O(n ^ 3)实现也比Strassen算法快。

<pre><script>

var fib = {};

(function() {
    var sqrt_5  = Math.sqrt(5),
        phi     = (1 + sqrt_5) / 2;

    fib.round = function(n) {
        return Math.floor(Math.pow(phi, n) / sqrt_5 + 0.5);
    };
})();

(function() {
    fib.loop = function(n) {
        var i = 0,
            j = 1;

        while(n--) {
            var tmp = i;
            i = j;
            j += tmp;
        }

        return i;
    };
})();

(function () {
    var cache = [0, 1];

    fib.loop_cached = function(n) {
        if(n >= cache.length) {
            for(var i = cache.length; i <= n; ++i)
                cache[i] = cache[i - 1] + cache[i - 2];
        }

        return cache[n];
    };
})();

(function() {
    //Fibonacci sequence generator in JS
    //Cobbled together by Salty
    var m;
    var odd = [[1,1],[1,0]];

    function matrix(a,b) {
        /*
            Matrix multiplication
            Strassen Algorithm
            Only works with 2x2 matrices.
        */
        var c=[[0,0],[0,0]];
        var m1=(a[0][0]+a[1][1])*(b[0][0]+b[1][1]);
        var m2=(a[1][0]+a[1][1])*b[0][0];
        var m3=a[0][0]*(b[0][1]-b[1][1]);
        var m4=a[1][1]*(b[1][0]-b[0][0]);
        var m5=(a[0][0]+a[0][1])*b[1][1];
        var m6=(a[1][0]-a[0][0])*(b[0][0]+b[0][1]);
        var m7=(a[0][1]-a[1][1])*(b[1][0]+b[1][1]);
        c[0][0]=m1+m4-m5+m7;
        c[0][1]=m3+m5;
        c[1][0]=m2+m4;
        c[1][1]=m1-m2+m3+m6;
        return c;
    }

    function mat(n) {
        if(n > 1) {
            mat(n/2);
            m = matrix(m,m);
        }
        m = (n%2<1) ? m : matrix(m,odd);
    }

    fib.matrix = function(n) {
        m = [[1,0],[0,1]];
        mat(n-1);
        return m[0][0];
    };
})();

(function() {
    var a;

    function square() {
        var a00 = a[0][0],
            a01 = a[0][1],
            a10 = a[1][0],
            a11 = a[1][1];

        var a10_x_a01 = a10 * a01,
            a00_p_a11 = a00 + a11;

        a[0][0] = a10_x_a01 + a00 * a00;
        a[0][1] = a00_p_a11 * a01;
        a[1][0] = a00_p_a11 * a10;
        a[1][1] = a10_x_a01 + a11 * a11;
    }

    function powPlusPlus() {
        var a01 = a[0][1],
            a11 = a[1][1];

        a[0][1] = a[0][0];
        a[1][1] = a[1][0];
        a[0][0] += a01;
        a[1][0] += a11;
    }

    function compute(n) {
        if(n > 1) {
            compute(n >> 1);
            square();
            if(n & 1)
                powPlusPlus();
        }
    }

    fib.matrix_optimised = function(n) {
        if(n == 0)
            return 0;

        a = [[1, 1], [1, 0]];
        compute(n - 1);

        return a[0][0];
    };
})();

(function() {
    var cache = {};
    cache[0] = [[1, 0], [0, 1]];
    cache[1] = [[1, 1], [1, 0]];

    function mult(a, b) {
        return [
            [a[0][0] * b[0][0] + a[0][1] * b[1][0],
                a[0][0] * b[0][1] + a[0][1] * b[1][1]],
            [a[1][0] * b[0][0] + a[1][1] * b[1][0],
                a[1][0] * b[0][1] + a[1][1] * b[1][1]]
        ];
    }

    function compute(n) {
        if(!cache[n]) {
            var n_2 = n >> 1;
            compute(n_2);
            cache[n] = mult(cache[n_2], cache[n_2]);
            if(n & 1)
                cache[n] = mult(cache[1], cache[n]);
        }
    }

    fib.matrix_cached = function(n) {
        if(n == 0)
            return 0;

        compute(--n);

        return cache[n][0][0];
    };
})();

function test(name, func, n, count) {
    var value;

    var start = Number(new Date);
    while(count--)
        value = func(n);
    var end = Number(new Date);

    return 'fib.' + name + '(' + n + ') = ' + value + ' [' +
        (end - start) + 'ms]';
}

for(var func in fib)
    document.writeln(test(func, fib[func], 1450, 10000));

</script></pre>

产量

fib.round(1450) = 4.8149675025003456e+302 [20ms]
fib.loop(1450) = 4.81496750250011e+302 [4035ms]
fib.loop_cached(1450) = 4.81496750250011e+302 [8ms]
fib.matrix(1450) = 4.814967502500118e+302 [2201ms]
fib.matrix_optimised(1450) = 4.814967502500113e+302 [585ms]
fib.matrix_cached(1450) = 4.814967502500113e+302 [12ms]

您的算法几乎与未缓存的循环一样糟糕。缓存是最好的选择,紧接着是舍入算法 - 这会导致大n的结果不正确(与矩阵算法一样)。

对于较小的n,您的算法的性能甚至超过其他所有内容:

fib.round(100) = 354224848179263100000 [20ms]
fib.loop(100) = 354224848179262000000 [248ms]
fib.loop_cached(100) = 354224848179262000000 [6ms]
fib.matrix(100) = 354224848179261900000 [1911ms]
fib.matrix_optimised(100) = 354224848179261900000 [380ms]
fib.matrix_cached(100) = 354224848179261900000 [12ms]

答案 1 :(得分:6)

第n个Fibonacci数有一个封闭形式(无循环)解决方案。

See Wikipedia.

答案 2 :(得分:4)

可能有更快的方法来计算价值,但我不认为这是必要的。

计算一次,在程序中输出结果作为下面的fibdata行:

fibdata = [1,1,2,3,5,8,13, ... , 1.3069892237633993e+308];  // 1476 entries.
function fib(n) {
    if ((n < 0) || (n > 1476)) {
        ** Do something exception-like or return INF;
    }
    return fibdata[n];
}

然后,这是您发送给客户的代码。这对你来说是一个O(1)解决方案。

人们经常忽视'缓存'解决方案。我曾经不得不为嵌入式系统编写三角函数例程,而不是使用无限级数来动态计算它们,我只是有几个查找表,每个输入程度各有360个条目。

毋庸置疑,它只是以1K左右的RAM为代价而尖叫着。这些值存储为1字节条目,[实际值(0-1)* 16],因此我们可以进行查找,乘法和位移以获得所需的值。

答案 3 :(得分:2)

我之前的回答有点拥挤,所以我会发布一个新的:

您可以使用vanilla 2x2矩阵乘法来加速算法 - 即将matrix()函数替换为:

function matrix(a, b) {
    return [
        [a[0][0] * b[0][0] + a[0][1] * b[1][0],
            a[0][0] * b[0][1] + a[0][1] * b[1][1]],
        [a[1][0] * b[0][0] + a[1][1] * b[1][0],
            a[1][0] * b[0][1] + a[1][1] * b[1][1]]
    ];
}

如果您关心准确性和速度,请使用缓存解决方案。如果准确性不是问题,而是内存消耗,则使用舍入解决方案。矩阵解决方案只有在你想要快n大的结果,不关心准确性并且不想重复调用函数时才有意义。

编辑:如果您使用专门的乘法函数,消除常见的子表达式并替换现有数组中的值而不是创建新数组,您甚至可以进一步加快计算速度:

function square() {
    var a00 = a[0][0],
        a01 = a[0][1],
        a10 = a[1][0],
        a11 = a[1][1];

    var a10_x_a01 = a10 * a01,
        a00_p_a11 = a00 + a11;

    a[0][0] = a10_x_a01 + a00 * a00;
    a[0][1] = a00_p_a11 * a01;
    a[1][0] = a00_p_a11 * a10;
    a[1][1] = a10_x_a01 + a11 * a11;
}

function powPlusPlus() {
    var a01 = a[0][1],
        a11 = a[1][1];

    a[0][1] = a[0][0];
    a[1][1] = a[1][0];
    a[0][0] += a01;
    a[1][0] += a11;
}

注意:a是全局矩阵变量的名称。

答案 4 :(得分:2)

JavaScript中的封闭式解决方案:O(1),精确到n = 75

function fib(n){
   var sqrt5 = Math.sqrt(5);
   var a = (1 + sqrt5)/2;
   var b = (1 - sqrt5)/2;
   var ans = Math.round((Math.pow(a, n) - Math.pow(b, n))/sqrt5);
   return ans;
}

当然,即使乘法在处理大数字时开始花费其费用,但这会给你答案。据我所知,由于JavaScript对值进行四舍五入,它只能精确到n = 75.过去,你会得到一个很好的估计,但它不会完全准确,除非你想做一些棘手的事情,如商店将值作为字符串然后将其解析为BigIntegers。

答案 5 :(得分:1)

如何记住已经计算过的结果,例如:

var IterMemoFib = function() {
    var cache = [1, 1];
    var fib = function(n) {
        if (n >= cache.length) {
            for (var i = cache.length; i <= n; i++) {
                cache[i] = cache[i - 2] + cache[i - 1];
            }
        }
        return cache[n];
    }

    return fib;
}();

或者如果您想要更通用的记忆功能,请扩展Function原型:

Function.prototype.memoize = function() {
    var pad  = {};
    var self = this;
    var obj  = arguments.length > 0 ? arguments[i] : null;

    var memoizedFn = function() {
        // Copy the arguments object into an array: allows it to be used as
        // a cache key.
        var args = [];
        for (var i = 0; i < arguments.length; i++) {
            args[i] = arguments[i];
        }

        // Evaluate the memoized function if it hasn't been evaluated with
        // these arguments before.
        if (!(args in pad)) {
            pad[args] = self.apply(obj, arguments);
        }

        return pad[args];
    }

    memoizedFn.unmemoize = function() {
        return self;
    }

    return memoizedFn;
}

//Now, you can apply the memoized function to a normal fibonacci function like such:
Fib = fib.memoize();

要补充的一点是,由于技术(浏览器安全性)限制, memoized函数的参数只能是数组或标量值。没有对象。

参考:http://talideon.com/weblog/2005/07/javascript-memoization.cfm

答案 6 :(得分:1)

Dreas的回答中展开一点:

1)cache应以[0, 1]开始 2)你对IterMemoFib(5.5)做了什么? (cache[5.5] == undefined

fibonacci = (function () {
  var FIB = [0, 1];

  return function (x) {
    if ((typeof(x) !== 'number') || (x < 0)) return;
    x = Math.floor(x);

    if (x >= FIB.length)
      for (var i = FIB.length; i <= x; i += 1)
        FIB[i] = FIB[i-1] + FIB[i-2];

    return FIB[x];
  }
})();

alert(fibonacci(17));    // 1597 (FIB => [0, 1, ..., 1597]) (length = 17)
alert(fibonacci(400));   // 1.760236806450138e+83 (finds 18 to 400)
alert(fibonacci(1476));  // 1.3069892237633987e+308 (length = 1476)

如果您不喜欢无声错误:

// replace...
if ((typeof(x) !== 'number') || (x < 0)) return;

// with...
if (typeof(x) !== 'number') throw new TypeError('Not a Number.');
if (x < 0) throw new RangeError('Not a possible fibonacci index. (' + x + ')');

答案 7 :(得分:1)

这是计算斐波那契序列的一种非常快速的解决方案

function fib(n){
    var start = Number(new Date); 
    var field = new Array();
    field[0] = 0;
    field[1] = 1;
    for(var i=2; i<=n; i++)
        field[i] = field[i-2] + field[i-1]
    var end = Number(new Date); 
    return 'fib' + '(' + n + ') = ' + field[n] + ' [' +
        (end - start) + 'ms]';

}

var f = fib(1450)
console.log(f)

答案 8 :(得分:1)

我刚刚使用Object编写了自己的小实现来存储已经计算过的结果。我在Node.JS中写了它,需要2ms(根据我的计时器)来计算1476的斐波那契。

这里的代码被剥离为纯Javascript:

var nums = {}; // Object that stores already computed fibonacci results
function fib(n) { //Function
    var ret; //Variable that holds the return Value
    if (n < 3) return 1; //Fib of 1 and 2 equal 1 => filtered here
    else if (nums.hasOwnProperty(n)) ret = nums[n]; /*if the requested number is 
     already in the object nums, return it from the object, instead of computing */
    else ret = fib( n - 2 ) + fib( n - 1 ); /* if requested number has not
     yet been calculated, do so here */
    nums[n] = ret; // add calculated number to nums objecti
    return ret; //return the value
}

//and finally the function call:
fib(1476)

编辑:我没有尝试在浏览器中运行它!

再次编辑:现在我做到了。尝试jsfiddle:jsfiddle fibonacci时间在0到2毫秒之间

答案 9 :(得分:0)

更快的算法:

const fib = n => fib[n] || (fib[n-1] = fib(n-1)) + fib[n-2];
fib[0] = 0; // Any number you like
fib[1] = 1; // Any number you like