我试图在张量流中从头开始编码和学习RNN。我已经明白我们需要创建一个basicRNNCell并将其称为具有正确尺寸的rnn(数据,输入)。但是我收到尺寸错误,如下所示
这是我写的代码。
x = tf.placeholder(dtype=tf.float32, shape=[2, 4]) # Batchsize: 2, stepsize: 4
rnn = tf.contrib.rnn.BasicRNNCell(10, reuse=True)
state = rnn.zero_state(2, dtype=tf.float32) # A matrix of shape [2, 10]
rnn(x, state) # ERROR OCCURS AT THIS LINE
with tf.Session() as sess:
sess.run(y, feed_dict={x: [[1, 2, 1, 1], [0, 0, 0, 1]]})
这是错误
ValueError:尝试共享变量basic_rnn_cell / weights,但指定形状(14,10)并找到形状(6,4)。
我做错了什么?
答案 0 :(得分:2)
我认为您的参数出错了。我将在这里为您报告一个有效的代码:
import tensorflow as tf
batch_size = 2
seq_len = 4
rnn_output_dim = 10
sess = tf.InteractiveSession()
x = tf.placeholder(dtype=tf.float32, shape=(batch_size, seq_len))
rnn_cell = tf.contrib.rnn.BasicRNNCell(rnn_output_dim)
state = rnn_cell.zero_state(batch_size, dtype=tf.float32)
output, state = rnn_cell(x, state)
sess.run(tf.global_variables_initializer())
res = sess.run(output, {x: [[1,2,1,1],[0,0,0,1]]})
print(res)
"""
array([[ 0.21117647, -0.66317081, 0.89524043, -0.54004282, -0.80074871,
0.86230665, -0.77558851, 0.46061009, 0.09429809, 0.17166322],
[ 0.42703518, -0.18116307, 0.32701704, 0.02224555, -0.39941645,
0.10977989, -0.15780419, 0.41289148, 0.35284221, -0.21626833]], dtype=float32)
"""