Keras - 弹出并重新添加图层,但图层不会断开连接

时间:2017-03-05 17:06:03

标签: python deep-learning keras keras-layer

使用Keras(1.2.2),我正在加载一个最后一层为的序列模型:

model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))

然后,我想弹出最后一层,添加另一个完全连接的图层,然后重新添加分类图层。

model = load_model('model1.h5')                                                                         
layer1 = model.layers.pop() # Copy activation_6 layer                                      
layer2 = model.layers.pop() # Copy classification layer (dense_2)                          

model.add(Dense(512, name='dense_3'))
model.add(Activation('softmax', name='activation_7'))

model.add(layer2)
model.add(layer1)

print(model.summary())

正如您所看到的,我的dense_3和activation_7未连接到网络(摘要()中的空值与“已连接到”)。我在文档中找不到任何解释如何解决此问题的内容。有什么想法吗?

dense_1 (Dense)                  (None, 512)           131584      flatten_1[0][0]                  
____________________________________________________________________________________________________
activation_5 (Activation)        (None, 512)           0           dense_1[0][0]                    
____________________________________________________________________________________________________
dense_3 (Dense)                  (None, 512)           5632                                         
____________________________________________________________________________________________________
activation_7 (Activation)        (None, 512)           0                                            
____________________________________________________________________________________________________
dense_2 (Dense)                  (None, 10)            5130        activation_5[0][0]               
____________________________________________________________________________________________________
activation_6 (Activation)        (None, 10)            0           dense_2[0][0]                    
====================================================================================================

按照下面的答案,我在打印model.summary()之前编译了模型,但由于某些原因,图层没有正确弹出,如摘要所示:最后一层的连接错误:

dense_1 (Dense)                  (None, 512)           131584      flatten_1[0][0]                  
____________________________________________________________________________________________________
activation_5 (Activation)        (None, 512)           0           dense_1[0][0]                    
____________________________________________________________________________________________________
dense_3 (Dense)                  (None, 512)           5632        activation_6[0][0]               
____________________________________________________________________________________________________
activation_7 (Activation)        (None, 512)           0           dense_3[0][0]                    
____________________________________________________________________________________________________
dense_2 (Dense)                  (None, 10)            5130        activation_5[0][0]               
                                                                   activation_7[0][0]               
____________________________________________________________________________________________________
activation_6 (Activation)        (None, 10)            0           dense_2[0][0]                    
                                                                   dense_2[1][0]                    
====================================================================================================

但它应该是

dense_1 (Dense)                  (None, 512)           131584      flatten_1[0][0]                  
____________________________________________________________________________________________________
activation_5 (Activation)        (None, 512)           0           dense_1[0][0]                    
____________________________________________________________________________________________________
dense_3 (Dense)                  (None, 512)           5632        activation_5[0][0]               
____________________________________________________________________________________________________
activation_7 (Activation)        (None, 512)           0           dense_3[0][0]                    
____________________________________________________________________________________________________
dense_2 (Dense)                  (None, 10)            5130                       
                                                                   activation_7[0][0]               
____________________________________________________________________________________________________
activation_6 (Activation)        (None, 10)            0           dense_2[0][0]                    

====================================================================================================

3 个答案:

答案 0 :(得分:4)

删除图层时,需要重新编译模型才能使图层生效。

所以使用

model.compile(loss=...,optimizer=..., ...)

在打印摘要之前,它应该正确地集成更改。

修改:

您尝试做的事实上是顺序模式实际上非常复杂。对于您的顺序模型,我可以提出解决方案(如果有更好的请告诉我):

model = load_model('model1.h5')                                                                         
layer1 = model.layers.pop() # Copy activation_6 layer                                      
layer2 = model.layers.pop() # Copy classification layer (dense_2)                          

model.add(Dense(512, name='dense_3'))
model.add(Activation('softmax', name='activation_7'))

# get layer1 config
layer1_config = layer1.get_config()
layer2_config = layer2.get_config()
# change the name of the layers otherwise it complains
layer1_config['name'] = layer1_config['name'] + '_new'
layer2_config['name'] = layer2_config['name'] + '_new'

# import the magic function
from keras.utils.layer_utils import layer_from_config
# re-add new layers from the config of the old ones 
model.add(layer_from_config({'class_name':type(l2), 'config':layer2_config}))
model.add(layer_from_config({'class_name':type(l1), 'config':layer1_config}))

model.compile(...)

print(model.summary())

黑客的存在是你的图层具有我无法改变的layer1.inputlayer1.output属性。

一种方法是使用Functionnal API模型。这允许您定义进入的层和层中的内容。

首先你需要定义你的pop()函数,每次弹出一个图层时都要正确地重新链接图层,该函数来自this github issue

def pop_layer(model):
    if not model.outputs:
        raise Exception('Sequential model cannot be popped: model is empty.')

    popped_layer = model.layers.pop()
    if not model.layers:
        model.outputs = []
        model.inbound_nodes = []
        model.outbound_nodes = []
    else:
        model.layers[-1].outbound_nodes = []
        model.outputs = [model.layers[-1].output]
    model.built = False
    return popped_layer

它只删除最后一层的每个输出链接,并将模型的输出更改为新的最后一层。现在你可以在:

中使用它
model = load_model('model1.h5')                                                                         
layer1 = model.layers.pop() # Copy activation_6 layer                                      
layer2 = model.layers.pop() # Copy classification layer (dense_2)     

# take model.outputs and feed a Dense layer
h = Dense(512,name='dense_3')(model.outputs)
h = Activation('relu', name=('activation_7')(h)
# apply
h = layer2(h)
output = layer1(h)

model = Model(input=model.input, output=output)
model.compile(...)
model.summary()

可能有更好的解决方案,但这就是我要做的。

我希望这会有所帮助。

答案 1 :(得分:0)

出于某种原因,我需要在添加新图层之前使用模型构建具有弹出图层的模型,以使工作正常。

conda list keras
# Name                    Version                   Build  Channel
keras                     2.1.5                    py36_0    conda-forge

以下是代码段:

def pop_layer(model):
    if not model.outputs:
        raise Exception('Sequential model cannot be popped: model is empty.')

    model.layers.pop()
    if not model.layers:
        model.outputs = []
        model.inbound_nodes = []
        model.outbound_nodes = []
    else:
        model.layers[-1].outbound_nodes = []
        model.outputs = [model.layers[-1].output]
    model.built = False

def get_model():
    #Fully convolutional part of VGG16
    model = VGG16(include_top=False, weights='imagenet')

    #Remove last max pooling layer
    pop_layer(model)

    #Freeze pretrained layers
    for layer in model.layers:
        layer.trainable = False

    model = Model(inputs=model.inputs, outputs=model.outputs)

    print('len(model.layers)', len(model.layers)) #
    print(model.summary()) #

    x = GlobalAveragePooling2D()(model.output)
    head = Dense(N_CLASS, activation='softmax')(x)

    model = Model(inputs=model.inputs, outputs=head)

    model.compile(optimizer=Adadelta(), loss='categorical_crossentropy', metrics=['accuracy'])

    print('len(model.layers)', len(model.layers)) #
    print(model.summary()) #

    return model

答案 2 :(得分:0)

我正在使用以下功能,并且适用于我的代码:

for layer in model1.layers[:22]:
    model.add(layer)