Opencv二进制项检测

时间:2017-03-05 15:37:58

标签: python opencv

我正在制作一个程序来查找卡在我制作的部件中的碎片。到目前为止,我已经能够采用干净的部件和带有芯片的部件并减去两个图像,将两者之间的任何差异留作二进制图像。我不明白的是如何在二进制图像中检测这个项目。到目前为止,我使用了SimpleBlobDetector函数,但我必须模糊图像以使其工作,我担心它不会使用较小的碎片。我希望能够在没有广泛模糊的情况下检测到原始图像。任何帮助,将不胜感激。代码和图片如下。

import cv2
import numpy as np

#Load Images
tempImg = cv2.imread('images/partchip.jpg')
lineImg = cv2.imread('images/partnochip.jpg')

#Crop Images
cropTemp = tempImg[460:589, 647:875]
cropLine = lineImg[460:589, 647:875]

#Gray Scale
grayTemp = cv2.cvtColor(cropTemp,cv2.COLOR_BGR2GRAY)
grayLine = cv2.cvtColor(cropLine,cv2.COLOR_BGR2GRAY)

#Subtract Images
holder = cv2.absdiff(grayTemp,grayLine)

#THreshold Subtracted Image
th, imgDiff = cv2.threshold(holder, 160, 255, cv2.THRESH_BINARY_INV)

#Blur Image
#blur = imgDiff
blur = cv2.blur(imgDiff,(20,20))

#Detect Blobs
detector = cv2.SimpleBlobDetector_create()
blob = detector.detect(blur)


imgkeypoints = cv2.drawKeypoints(blur, blob, np.array([]), (0,255,0),  cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
originalWithPoints=cv2.drawKeypoints(cropTemp, blob, np.array([]), (0,255,0),  cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

cv2.namedWindow("Template", cv2.WINDOW_NORMAL)
cv2.namedWindow("Line", cv2.WINDOW_NORMAL)
cv2.namedWindow("Difference", cv2.WINDOW_NORMAL)

cv2.resizeWindow("Template", 500, 300)
cv2.resizeWindow("Line", 500, 300)
cv2.resizeWindow("Difference", 500, 300)


cv2.imshow('Template',originalWithPoints)
cv2.imshow('Line',cropLine)
cv2.imshow('Difference',imgkeypoints)


cv2.waitKey(0)
cv2.destroyAllWindows()

Part with chip Part with No Chip

1 个答案:

答案 0 :(得分:1)

我用你的代码找到异常。我获得了imgDiff二进制图像上具有最大面积的轮廓。使用它我能够用矩形绑定它。

enter image description here

我希望这就是你要找的......

修改

我已经解释了该程序以及下面的代码:

注意:使用imgDiff反转cv2.bitwise_not(imgDiff),因为如果对象是白色,则会找到轮廓。

#---Finding the contours present in 'imgDiff'---
_, contours,hierarchy = cv2.findContours(imgDiff,2,1)

ff = 0   #----to determine which contour to select---
area = 0   #----to determine the maximum area---
for i in range(len(contours)):
    if(cv2.contourArea(contours[i]) > area):
        area = cv2.contourArea(contours[i])
        ff = i

#---Bounding the contour having largest area---
x,y,w,h = cv2.boundingRect(contours[ff])
cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
cv2.imshow('fin.jpg',img)