我有一个DF,我在计算填充字段中的emi值
account Total Start Date End Date EMI
211829 107000 05/19/17 01/22/19 5350
320563 175000 08/04/17 10/30/18 12500
648336 246000 02/26/17 08/25/19 8482.7586206897
109996 175000 11/23/17 11/27/19 7291.6666666667
121213 317000 09/07/17 04/12/18 45285.7142857143
然后根据日期范围我创建新的字段,如1月17日,2月17日,3月17日等,并填写下面的代码。
jant17 = pd.to_datetime('2017-01-01')
febt17 = pd.to_datetime('2017-02-01')
mart17 = pd.to_datetime('2017-03-01')
jan17 = pd.to_datetime('2017-01-31')
feb17 = pd.to_datetime('2017-02-28')
mar17 = pd.to_datetime('2017-03-31')
df.ix[(df['Start Date'] <= jan17) & (df['End Date'] >= jant17) , 'Jan17'] = df['EMI']
但缺点是当我必须做一个预测到2019年或2020年他们变得太多的代码行写,当有任何更新我需要修改太多的代码行。为了减少代码行,我尝试了一种使用for循环的替代方法,但代码开始需要很长时间才能执行。
monthend = { 'Jan17' : pd.to_datetime('2017-01-31'),
'Feb17' : pd.to_datetime('2017-02-28'),
'Mar17' : pd.to_datetime('2017-03-31')}
monthbeg = { 'Jant17' : pd.to_datetime('2017-01-01'),
'Febt17' : pd.to_datetime('2017-02-01'),
'Mart17' : pd.to_datetime('2017-03-01')}
for mend in monthend.values():
for mbeg in monthbeg.values():
for coln in colnames:
df.ix[(df['Start Date'] <= mend) & (df['End Date'] >= mbeg) , coln] = df['EMI']
这大大减少了代码行的数量,但是从执行时间增加到3-4分钟到1小时。是否有更好的方法来使用更少的线和更少的处理时间对其进行编码
答案 0 :(得分:3)
我认为您可以使用df
,start
日期和end
列创建帮助names
,循环行并创建原始df
的新列:
dates = pd.DataFrame({'start':pd.date_range('2017-01-01', freq='MS', periods=10),
'end':pd.date_range('2017-01-01', freq='M', periods=10)})
dates['names'] = dates.start.dt.strftime('%b%y')
print (dates)
end start names
0 2017-01-31 2017-01-01 Jan17
1 2017-02-28 2017-02-01 Feb17
2 2017-03-31 2017-03-01 Mar17
3 2017-04-30 2017-04-01 Apr17
4 2017-05-31 2017-05-01 May17
5 2017-06-30 2017-06-01 Jun17
6 2017-07-31 2017-07-01 Jul17
7 2017-08-31 2017-08-01 Aug17
8 2017-09-30 2017-09-01 Sep17
9 2017-10-31 2017-10-01 Oct17
#if necessary convert to datetimes
df['Start Date'] = pd.to_datetime(df['Start Date'])
df['End Date'] = pd.to_datetime(df['End Date'])
def f(x):
df.loc[(df['Start Date'] <= x.start) & (df['End Date'] >= x.end) , x.names] = df['EMI']
dates.apply(f, axis=1)
print (df)
account Total Start Date End Date EMI Jan17 Feb17 \
0 211829 107000 2017-05-19 2019-01-22 5350.000000 NaN NaN
1 320563 175000 2017-08-04 2018-10-30 12500.000000 NaN NaN
2 648336 246000 2017-02-26 2019-08-25 8482.758621 NaN NaN
3 109996 175000 2017-11-23 2019-11-27 7291.666667 NaN NaN
4 121213 317000 2017-09-07 2018-04-12 45285.714286 NaN NaN
Mar17 Apr17 May17 Jun17 Jul17 \
0 NaN NaN NaN 5350.000000 5350.000000
1 NaN NaN NaN NaN NaN
2 8482.758621 8482.758621 8482.758621 8482.758621 8482.758621
3 NaN NaN NaN NaN NaN
4 NaN NaN NaN NaN NaN
Aug17 Sep17 Oct17
0 5350.000000 5350.000000 5350.000000
1 NaN 12500.000000 12500.000000
2 8482.758621 8482.758621 8482.758621
3 NaN NaN NaN
4 NaN NaN 45285.714286