获取pandas数据帧中的最大连续空行

时间:2017-03-02 16:18:08

标签: python python-3.x pandas

我有一个DataFrame,我需要通过开始和结束日期获取更大的空行序列以供进一步研究。我的索引是一个DatatimeIndex对象,DataFrame看起来像这样:

                           C Instalation  N Serial Number D Register Read  \
Z Ts Read                                                                    
2016-12-25 00:00:00  PT0002000080299561BD   10101516046456              A+   
2016-12-25 00:15:00  PT0002000080299561BD   10101516046456              A+   
2016-12-25 00:30:00  PT0002000080299561BD   10101516046456              A+   
2016-12-25 00:45:00  PT0002000080299561BD   10101516046456              A+   
2016-12-25 01:00:00  PT0002000080299561BD   10101516046456              A+   

                    M Read D Read Unit  
Z Ts Read                               
2016-12-25 00:00:00  0,002         kWh  
2016-12-25 00:15:00  0,002         kWh  
2016-12-25 00:30:00  0,002         kWh  
2016-12-25 00:45:00  0,002         kWh  
2016-12-25 01:00:00  0,002         kWh 

NaN值可以分散在数据框中,没问题。但如果他们是连续的,我会介意的。在这种情况下,我想知道每行至少有一个NaN值,开始和结束index并计算两者之间的范围差异。最后,我希望获得更大的范围。

可以这样做吗?

1 个答案:

答案 0 :(得分:0)

不确定我理解Q 100%但也许这就是你想要的:

df = pd.DataFrame({"a": [1, 2, 3, np.nan, np.nan, np.nan, 7, 8], "b": [1, 2, 3, np.nan, 5, 6, 7, 8]}

print df

     a    b
0  1.0  1.0
1  2.0  2.0
2  3.0  3.0
3  NaN  NaN
4  NaN  5.0
5  NaN  6.0
6  7.0  7.0
7  8.0  8.0

counts = df.isnull()
counts[~counts] = np.nan
print counts

    a    b
0  NaN  NaN
1  NaN  NaN
2  NaN  NaN
3  1.0  1.0
4  1.0  NaN
5  1.0  NaN
6  NaN  NaN
7  NaN  NaN

runs = counts.cumsum()
print runs

     a    b
0  NaN  NaN
1  NaN  NaN
2  NaN  NaN
3  1.0  1.0
4  2.0  NaN
5  3.0  NaN
6  NaN  NaN
7  NaN  NaN

runs.max(axis=0)

a    3.0
b    1.0
dtype: float64