我想在1个特定列上应用cumsum,因为我在不同的列中有其他值必须保持不变。
这是我到目前为止的脚本
df.groupby(by=['name','day']).sum().groupby(level=[0]).cumsum()
然而,这个脚本导致我的pandas df中的所有列都会累积。必须累积总和的唯一列是data
。
根据要求,这里有一些示例数据:
df = pd.DataFrame({'ID': ["880022443344556677787", "880022443344556677782", "880022443344556677787",
"880022443344556677782", "880022443344556677787", "880022443344556677782",
"880022443344556677781"],
'Month': ["201701", "201701", "201702", "201702", "201703", "201703", "201703"],
'Usage': [20, 40, 100, 50, 30, 30, 2000],
'Sec': [10, 15, 20, 1, 5, 6, 30]})
ID Month Sec Usage
0 880022443344556677787 201701 10 20
1 880022443344556677782 201701 15 40
2 880022443344556677787 201702 20 100
3 880022443344556677782 201702 1 50
4 880022443344556677787 201703 5 30
5 880022443344556677782 201703 6 30
6 880022443344556677781 201703 30 2000
期望的输出
ID Month Sec Usage
0 880022443344556677787 201701 10 20
1 880022443344556677782 201701 15 40
2 880022443344556677787 201702 20 120
3 880022443344556677782 201702 1 90
4 880022443344556677787 201703 5 150
5 880022443344556677782 201703 6 120
6 880022443344556677781 201703 30 2000
答案 0 :(得分:3)
考虑数据框df
df = pd.DataFrame(dict(
name=list('aaaaaaaabbbbbbbb'),
day=np.tile(np.arange(2).repeat(4), 2),
data=np.arange(16)
))
首先,您通过在cumsum
语句后命名列来对特定列执行groupby
。
其次,您可以使用df
join
d2 = df.groupby(['name', 'day']).data.sum().groupby(level=0).cumsum()
df.join(d2, on=['name', 'day'], rsuffix='_cum')
data day name data_cum
0 0 0 a 6
1 1 0 a 6
2 2 0 a 6
3 3 0 a 6
4 4 1 a 28
5 5 1 a 28
6 6 1 a 28
7 7 1 a 28
8 8 0 b 38
9 9 0 b 38
10 10 0 b 38
11 11 0 b 38
12 12 1 b 92
13 13 1 b 92
14 14 1 b 92
15 15 1 b 92
答案 1 :(得分:2)
对于不需要cumsum
的cols,我认为你需要set_index
- 我通过list comprehension
动态找到它们:
cumsum_col = 'Usage'
df1 = df.groupby(by=['ID','Month'], sort=False).sum()
cols = [col for col in df1.columns if col != cumsum_col]
df1 = df1.set_index(cols, append=True).groupby(level=[0]).cumsum().reset_index()
print (df1)
ID Month Sec Usage
0 880022443344556677787 201701 10 20
1 880022443344556677782 201701 15 40
2 880022443344556677787 201702 20 120
3 880022443344556677782 201702 1 90
4 880022443344556677787 201703 5 150
5 880022443344556677782 201703 6 120
6 880022443344556677781 201703 30 2000
编辑:
cumsum_col = 'Usage'
df2 = df.groupby(by=['ID','Month'], sort=False).sum()
cols = [col for col in df2.columns if col != cumsum_col]
df1 = df2.set_index(cols, append=True).groupby(level=[0]).cumsum()
df1 = df2.assign(Usage_cumsum = df1.reset_index(level=2, drop=True)).reset_index()
print (df1)
ID Month Sec Usage Usage_cumsum
0 880022443344556677787 201701 10 20 20
1 880022443344556677782 201701 15 40 40
2 880022443344556677787 201702 20 100 120
3 880022443344556677782 201702 1 50 90
4 880022443344556677787 201703 5 30 150
5 880022443344556677782 201703 6 30 120
6 880022443344556677781 201703 30 2000 2000
EDIT1:
在您的示例中,数据不是聚合sum
,因此数据有点修改(解决方案类似,但与另一个不同):
df = pd.DataFrame({'ID': ["880022443344556677787", "880022443344556677782", "880022443344556677787",
"880022443344556677782", "880022443344556677787", "880022443344556677782",
"880022443344556677781"],
'Month': ["201701", "201701", "201701", "201702", "201703", "201701", "201703"],
'Usage': [20, 40, 100, 50, 30, 30, 2000],
'Sec': [10, 15, 20, 1, 5, 6, 30]})
print (df)
ID Month Sec Usage
0 880022443344556677787 201701 10 20
1 880022443344556677782 201701 15 40
2 880022443344556677787 201701 20 100
3 880022443344556677782 201702 1 50
4 880022443344556677787 201703 5 30
5 880022443344556677782 201701 6 30
6 880022443344556677781 201703 30 2000
#aggregate sum to all columns
df1 = df.groupby(['ID', 'Month']).sum()
print (df1)
Sec Usage
ID Month
880022443344556677781 201703 30 2000
880022443344556677782 201701 21 70
201702 1 50
880022443344556677787 201701 30 120
201703 5 30
#aggregate cumcum to Usage column only
s = df1.groupby(level=0)['Usage'].cumsum()
print (s)
ID Month
880022443344556677781 201703 2000
880022443344556677782 201701 70
201702 120
880022443344556677787 201701 120
201703 150
Name: Usage, dtype: int64
#join cumsum series to aggregate df1
df3 = df1.join(s, rsuffix='_cumsum').reset_index()
print (df3)
ID Month Sec Usage Usage_cumsum
0 880022443344556677781 201703 30 2000 2000
1 880022443344556677782 201701 21 70 70
2 880022443344556677782 201702 1 50 120
3 880022443344556677787 201701 30 120 120
4 880022443344556677787 201703 5 30 150
答案 2 :(得分:1)
您已经可以将累积总和('cumsum'
)作为df.groupby
的聚合。您需要将'cumsum'
作为字符串作为聚合函数提供给“数据”列。
df.groupby(['name','day']).agg({'data': 'cumsum'})