从守护程序获取事件的Docker错误:EOF

时间:2017-02-23 06:10:00

标签: python docker tensorflow deep-learning image-recognition

BUG报告信息

描述

大家好,在关注谷歌密码后,Codelabs我在ERRO[4334] error getting events from daemon: EOF

后收到错误Creating bottleneck at /tf_files/bottlenecks/roses/13231224664_4af5293a37.jpg.txt

更新: 我重申它,这显示出来 ERRO[53469] error getting events from daemon: EOF

重现此问题的步骤: 1。 ```  python tensorflow / examples / image_retraining / retrain.py \

  

- bottleneck_dir = / tf_files / bottlenecks \   --how_many_training_steps 500 \   --model_dir = / tf_files / inception \   --output_graph = / tf_files / retrained_graph.pb \   --output_labels = / tf_files / retrained_labels.txt \   --image_dir / tf_files / flower_photos

```

描述您收到的结果: ERRO[4334] error getting events from daemon: EOF

描述您期望的结果: Finish the retraining

docker version的输出:

Docker version 1.13.1, build 092cba3

docker info的输出:

Containers: 6 Running: 0 Paused: 0 Stopped: 6 Images: 2 Server Version: 1.13.1 Storage Driver: overlay2 Backing Filesystem: extfs Supports d_type: true Native Overlay Diff: true Logging Driver: json-file Cgroup Driver: cgroupfs Plugins: Volume: local Network: bridge host ipvlan macvlan null overlay Swarm: inactive Runtimes: runc Default Runtime: runc Init Binary: docker-init containerd version: aa8187dbd3b7ad67d8e5e3a15115d3eef43a7ed1 runc version: 9df8b306d01f59d3a8029be411de015b7304dd8f init version: 949e6fa Security Options: seccomp Profile: default Kernel Version: 4.9.8-moby Operating System: Alpine Linux v3.5 OSType: linux Architecture: x86_64 CPUs: 2 Total Memory: 1.952 GiB Name: moby ID: UNXQ:IPAT:2ZHG:3443:M7XI:M3FW:W7Q7:G4HV:IKKW:W5TU:72TI:SH3G Docker Root Dir: /var/lib/docker Debug Mode (client): false Debug Mode (server): true File Descriptors: 16 Goroutines: 27 System Time: 2017-02-21T14:43:50.071749826Z EventsListeners: 1 No Proxy: *.local, 169.254/16 Registry: https://index.docker.io/v1/ Experimental: true Insecure Registries: 127.0.0.0/8 Live Restore Enabled: false

其他环境详细信息(AWS,VirtualBox,物理等): OS X与python 2.7, 这显示出来了 W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE3 instructions, but these are available on your machine and could speed up CPU computations. W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations. W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations. W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations. W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations. W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations. Thank you so much

1 个答案:

答案 0 :(得分:2)

解决方案是在Docker首选项中增加CPU大小和Ram。