我知道其他人看到了类似的错误(TypeError: Image data can not convert to float,TypeError: Image data can not convert to float using matplotlib,Type Error: Image data can not convert to float),但我没有看到任何可以帮助我的解决方案。
我正在尝试用浮点数据填充一个numpy-array,并使用imshow填充它。 Y方向(几乎)是Hermite多项式和高斯包络的数据,而X方向只是一个高斯包络。
from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
####First we set Ne
Ne=25
###Set up a mesh with size sqrt(Ne) X sqrt(Ne)
sqrtNe=int(np.sqrt(Ne))
Ky=np.array(range(-sqrtNe,sqrtNe+1),dtype=float)
Kx=np.array(range(-sqrtNe,sqrtNe+1),dtype=float)
[KXmesh,KYmesh]=np.meshgrid(Kx,Ky,indexing='ij')
##X-direction is gussian envelope
AxMesh=np.exp(-(np.pi*KXmesh**2)/(4.0*Ne))
Nerror=21 ###This is where the error shows up
for n in range(Nerror,Ne):
##Y-direction is a polynomial of degree n ....
AyMesh=0.0
for i in range(n/2+1):
AyMesh+=(-1)**i*(np.sqrt(2*np.pi)*2*KYmesh)**(n-2*i)/(np.math.factorial(n-2*i)*np.math.factorial(i))
### .... times a gaussian envelope
AyMesh=AyMesh*np.exp(-np.pi*KYmesh**2)
AyMesh=AyMesh/np.max(np.abs(AyMesh))
WeightMesh=AyMesh*AxMesh
print("n:",n)
plt.figure()
####Error occurs here #####
plt.imshow(WeightMesh,interpolation='nearest')
plt.show(block=False)
当代码到达impow时,我收到以下错误消息
Traceback (most recent call last):
File "FDOccupation_mimimal.py", line 30, in <module>
plt.imshow(WeightMesh,interpolation='nearest')
File "/usr/lib/python2.7/dist-packages/matplotlib/pyplot.py", line 3022, in imshow
**kwargs)
File "/usr/lib/python2.7/dist-packages/matplotlib/__init__.py", line 1814, in inner
return func(ax, *args, **kwargs)
File "/usr/lib/python2.7/dist-packages/matplotlib/axes/_axes.py", line 4947, in imshow
im.set_data(X)
File "/usr/lib/python2.7/dist-packages/matplotlib/image.py", line 449, in set_data
raise TypeError("Image data can not convert to float")
TypeError: Image data can not convert to float
如果我替换代码
AyMesh=0.0
for i in range(n/2+1):
AyMesh+=(-1)**i*(np.sqrt(2*np.pi)*2*KYmesh)**(n-2*i)/(np.math.factorial(n-2*i)*np.math.factorial(i))
### .... times a gaussian envelope
AyMesh=AyMesh*np.exp(-np.pi*KYmesh**2)
AyMesh=AyMesh/np.max(np.abs(AyMesh))
只需
AyMesh=KYmesh**n*np.exp(-np.pi*KYmesh**2)
AyMesh=AyMesh/np.max(np.abs(AyMesh))
问题消失了!?
有谁知道这里发生了什么?
答案 0 :(得分:7)
对于较大的值,np.math.factorial
会返回long
而不是int
。 long
值的数组为dtype object
,因为无法使用NumPy类型存储。您可以通过
WeightMesh=np.array(AyMesh*AxMesh, dtype=float)
有一个合适的浮点数组。