有没有办法扩展包含列表的pandas Dataframe中的列,并从列表值中获取列名?

时间:2017-02-18 02:54:57

标签: python json list pandas dataframe

我已将嵌套的JSON文件转换为pandas DataFrame。有些列现在包含列表。它们看起来像这样:

0         [BikeParking: True, BusinessAcceptsBitcoin: Fa...
1         [BusinessAcceptsBitcoin: False, BusinessAccept...
2         [Alcohol: none, Ambience: {'romantic': False, ...
3         [AcceptsInsurance: False, BusinessAcceptsCredi...
4         [BusinessAcceptsCreditCards: True, Restaurants...
5         [BusinessAcceptsCreditCards: True, ByAppointme...
6         [BikeParking: True, BusinessAcceptsCreditCards...
7         [Alcohol: none, Ambience: {'romantic': False, ...
8                        [BusinessAcceptsCreditCards: True]
9         [BikeParking: True, BusinessAcceptsCreditCards...
10                                                     None
.
.
.
144070    [Alcohol: none, Ambience: {'romantic': False, ...
144071    [BikeParking: True, BusinessAcceptsCreditCards...
Name: attributes, dtype: object

和此:

0         [Monday 11:0-21:0, Tuesday 11:0-21:0, Wednesda...
1         [Monday 0:0-0:0, Tuesday 0:0-0:0, Wednesday 0:...
2         [Monday 11:0-2:0, Tuesday 11:0-2:0, Wednesday ...
3         [Tuesday 10:0-21:0, Wednesday 10:0-21:0, Thurs...
4                                                      None

144066                                                 None
144067    [Tuesday 8:0-16:0, Wednesday 8:0-16:0, Thursda...
144068    [Tuesday 10:0-17:30, Wednesday 10:0-17:30, Thu...
144069                                                 None
144070    [Monday 11:0-20:0, Tuesday 11:0-20:0, Wednesda...
144071    [Monday 10:0-21:0, Tuesday 10:0-21:0, Wednesda...
Name: hours, dtype: object

我是否有办法自动提取标签(BikeParking,AcceptsInsurance等)并将其用作列名,同时使用true / false值填充单元格。对于Ambience dict,我想在单元格中执行类似Ambience_romantic和true / false的操作。同样,我想以列名的形式提取一周中的几天,并使用小时来填充单元格。

或者有没有办法在之前展平json数据?我已经尝试将json数据逐行传递给json_normalize并从输出创建数据帧,但它产生相同的结果。也许我做错了什么?

原始json的格式(yelp_academic_dataset_business.json):

 {
    "business_id":"encrypted business id",
    "name":"business name",
    "neighborhood":"hood name",
    "address":"full address",
    "city":"city",
    "state":"state -- if applicable --",
    "postal code":"postal code",
    "latitude":latitude,
    "longitude":longitude,
    "stars":star rating, rounded to half-stars,
    "review_count":number of reviews,
    "is_open":0/1 (closed/open),
    "attributes":["an array of strings: each array element is an attribute"],
    "categories":["an array of strings of business categories"],
    "hours":["an array of strings of business hours"],
    "type": "business"
}

我使用json_normalize进行初始尝试:

with open('yelp_academic_dataset_business.json') as f:
        #Normalize the json data to flatten it and store output in a dataframe
        frame= json_normalize([json.loads(line) for line in f])

        #write the dataframe to a csv file
        frame.to_csv('yelp_academic_dataset_business.csv', encoding='utf-8', index=False)

我目前正在尝试的内容:

with open(json_filename) as f:
    data = f.readlines()

    # remove the trailing "\n" from each line
    data = map(lambda x: x.rstrip(), data)

    data_json_str = "[" + ','.join(data) + "]"  

    df = read_json(data_json_str)
    #Now Looking to expand df['attributes'] and others here

我还应该提到我的目标是将其转换为.csv以将其加载到数据库中。我不想在我的数据库列中找到列表。

您可以从Yelp数据集挑战网站获取原始json数据: https://www.yelp.ca/dataset_challenge/dataset

1 个答案:

答案 0 :(得分:0)

您正在尝试将“文档”(半结构化数据)转换为表格。如果一个记录包含例如,这可能是有问题的。没有其他记录的100个属性 - 您可能不希望向主表添加100列,并且所有其他记录都有空单元格。

但最后你已经解释过你打算这样做:

  1. 加载JSON。
  2. 转换为Pandas。
  3. 导出CSV。
  4. 导入数据库。
  5. 我在这里告诉你,这一切都毫无意义。通过所有这些中间格式对数据进行捣碎只会导致问题。

    相反,让我们回到基础:

    1. 加载JSON。
    2. 写入数据库。
    3. 现在第一步是提出架构。或者,如果您使用的是NoSQL数据库,则可以直接加载JSON而无需其他步骤。