我正在使用Dataflow 0.5.5 Python。在非常简单的代码中出现以下错误:
row_list
job name: `beamapp-root-0216042234-124125`
(f14756f20f567f62): Traceback (most recent call last):
File "/usr/local/lib/python2.7/dist-packages/dataflow_worker/batchworker.py", line 544, in do_work
work_executor.execute()
File "dataflow_worker/executor.py", line 973, in dataflow_worker.executor.MapTaskExecutor.execute (dataflow_worker/executor.c:30547)
with op.scoped_metrics_container:
File "dataflow_worker/executor.py", line 974, in dataflow_worker.executor.MapTaskExecutor.execute (dataflow_worker/executor.c:30495)
op.start()
File "dataflow_worker/executor.py", line 302, in dataflow_worker.executor.GroupedShuffleReadOperation.start (dataflow_worker/executor.c:12149)
def start(self):
File "dataflow_worker/executor.py", line 303, in dataflow_worker.executor.GroupedShuffleReadOperation.start (dataflow_worker/executor.c:12053)
with self.scoped_start_state:
File "dataflow_worker/executor.py", line 316, in dataflow_worker.executor.GroupedShuffleReadOperation.start (dataflow_worker/executor.c:11968)
with self.shuffle_source.reader() as reader:
File "dataflow_worker/executor.py", line 320, in dataflow_worker.executor.GroupedShuffleReadOperation.start (dataflow_worker/executor.c:11912)
self.output(windowed_value)
File "dataflow_worker/executor.py", line 152, in dataflow_worker.executor.Operation.output (dataflow_worker/executor.c:6317)
cython.cast(Receiver, self.receivers[output_index]).receive(windowed_value)
File "dataflow_worker/executor.py", line 85, in dataflow_worker.executor.ConsumerSet.receive (dataflow_worker/executor.c:4021)
cython.cast(Operation, consumer).process(windowed_value)
File "dataflow_worker/executor.py", line 766, in dataflow_worker.executor.BatchGroupAlsoByWindowsOperation.process (dataflow_worker/executor.c:25558)
self.output(wvalue.with_value((k, wvalue.value)))
File "dataflow_worker/executor.py", line 152, in dataflow_worker.executor.Operation.output (dataflow_worker/executor.c:6317)
cython.cast(Receiver, self.receivers[output_index]).receive(windowed_value)
File "dataflow_worker/executor.py", line 85, in dataflow_worker.executor.ConsumerSet.receive (dataflow_worker/executor.c:4021)
cython.cast(Operation, consumer).process(windowed_value)
File "dataflow_worker/executor.py", line 545, in dataflow_worker.executor.DoOperation.process (dataflow_worker/executor.c:18474)
with self.scoped_process_state:
File "dataflow_worker/executor.py", line 546, in dataflow_worker.executor.DoOperation.process (dataflow_worker/executor.c:18428)
self.dofn_receiver.receive(o)
File "apache_beam/runners/common.py", line 195, in apache_beam.runners.common.DoFnRunner.receive (apache_beam/runners/common.c:5137)
self.process(windowed_value)
File "apache_beam/runners/common.py", line 262, in apache_beam.runners.common.DoFnRunner.process (apache_beam/runners/common.c:7078)
self.reraise_augmented(exn)
File "apache_beam/runners/common.py", line 274, in apache_beam.runners.common.DoFnRunner.reraise_augmented (apache_beam/runners/common.c:7467)
raise type(exn), args, sys.exc_info()[2]
File "apache_beam/runners/common.py", line 258, in apache_beam.runners.common.DoFnRunner.process (apache_beam/runners/common.c:6967)
self._dofn_simple_invoker(element)
File "apache_beam/runners/common.py", line 198, in apache_beam.runners.common.DoFnRunner._dofn_simple_invoker (apache_beam/runners/common.c:5283)
self._process_outputs(element, self.dofn_process(element.value))
File "apache_beam/runners/common.py", line 286, in apache_beam.runners.common.DoFnRunner._process_outputs (apache_beam/runners/common.c:7678)
for result in results:
File "trip_augmentation_test.py", line 120, in get_osm_way
TypeError: object of type '_UnwindowedValues' has no len() [while running 'Pull way info from mapserver']
是一个列表。完全相同的代码,相同的数据和相同的管道在DirectRunner上运行完全正常,但在DataflowRunner上抛出以下异常。它是什么意思以及我如何解决它?
#!/usr/bin/env python
# coding: utf-8
from __future__ import absolute_import
import argparse
import logging
import json
import apache_beam as beam
from apache_beam.utils.options import PipelineOptions
from apache_beam.utils.options import SetupOptions
def get_osm_way(pairs_same_group):
import requests
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.exceptions import InsecureRequestWarning
from multiprocessing.pool import ThreadPool
import time
#disable InsecureRequestWarning for a cleaner output
requests.packages.urllib3.disable_warnings(InsecureRequestWarning)
print('processing hardwareid={} trips'.format(pairs_same_group[0]))
row_list = pairs_same_group[1]
print(row_list)
http_request_num = len(row_list) ######### this line ran into the above error##########
with requests.Session() as s:
s.mount('https://ip address',HTTPAdapter(pool_maxsize=http_request_num)) ##### a host name is needed for this http persistent connection
pool = ThreadPool(processes=1)
for row in row_list:
hardwareid=row['HardwareId']
tripid=row['TripId']
latlonArr = row['LatLonStrArr'].split(',');
print('gps points num: {}'.format(len(latlonArr)))
cor_array = []
for latlon in latlonArr:
lat = latlon.split(';')[0]
lon = latlon.split(';')[1]
cor_array.append('{{"x":"{}","y":"{}"}}'.format(lon, lat))
url = 'https://<ip address>/functionname?coordinates=[{}]'.format(','.join(cor_array))
print(url)
print("Requesting")
r = pool.apply_async(thread_get, (s, url)).get()
print ("Got response")
print(r)
if r.status_code==200:
yield (hardwareid,tripid,r.text)
else:
yield (hardwareid,tripid,None)
def run(argv=None):
parser = argparse.ArgumentParser()
parser.add_argument('--input',
help=('Input BigQuery table to process specified as: '
'PROJECT:DATASET.TABLE or DATASET.TABLE.'))
parser.add_argument(
'--output',
required=True,
help=
('Output BigQuery table for results specified as: PROJECT:DATASET.TABLE '
'or DATASET.TABLE.'))
known_args, pipeline_args = parser.parse_known_args(argv)
pipeline_options = PipelineOptions(argv)
pipeline_options.view_as(SetupOptions).save_main_session = True
p = beam.Pipeline(options=pipeline_options)
(p
| 'Read trip from BigQuery' >> beam.io.Read(beam.io.BigQuerySource(query=known_args.input))
| 'Convert' >> beam.Map(lambda row: (row['HardwareId'],row))
| 'Group devices' >> beam.GroupByKey()
| 'Pull way info from mapserver' >> beam.FlatMap(get_osm_way)
| 'Map way info to dictionary' >> beam.FlatMap(convert_to_dict)
| 'Save to BQ' >> beam.io.Write(beam.io.BigQuerySink(
known_args.output, schema='HardwareId:INTEGER,TripId:INTEGER,OrderBy:INTEGER,IndexRatio:FLOAT,IsEstimate:BOOLEAN,IsOverRide:BOOLEAN,MaxSpeed:FLOAT,Provider:STRING,RoadName:STRING,WayId:STRING,LastEdited:TIMESTAMP,WayLatLons:STRING,BigDataComment:STRING',
create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED,
write_disposition=beam.io.BigQueryDisposition.WRITE_TRUNCATE))
)
# Run the pipeline (all operations are deferred until run() is called).
p.run()
if __name__ == '__main__':
logging.getLogger().setLevel(logging.INFO)
run()
代码在这里:trip_augmentation_test.py
!python trip_augmentation_test.py \
--output 'my-project:my-dataset.mytable' \
--input 'SELECT HardwareId,TripId, LatLonStrArr FROM [my-project:my-dataset.mytable] ' \
--project 'my-project' \
--runner 'DataflowRunner' \ ### if just change this to DirectRunner, everything's fine
--temp_location 'gs://mybucket/tripway_temp' \
--staging_location 'gs://mybucket/tripway_staging' \
--worker_machine_type 'n1-standard-2' \
--profile_cpu True \
--profile_memory True
此处的管道调用(我正在使用Google Cloud Datalab)
row_list
跟进
我在DataflowRunner中记录了<class 'apache_beam.transforms.trigger._UnwindowedValues'>
的类型,它是list
,而在DirectRunner中,它是Performs unbuffered in place operation on operand 'a' for elements
specified by 'indices'. For addition ufunc, this method is equivalent to
`a[indices] += b`, except that results are accumulated for elements that
are indexed more than once. For example, `a[[0,0]] += 1` will only
increment the first element once because of buffering, whereas
`add.at(a, [0,0], 1)` will increment the first element twice.
.. versionadded:: 1.8.0
。这是预期的不一致吗?
答案 0 :(得分:12)
这种抽象在像Beam / Dataflow(和其他)这样的大数据系统中是必需的。考虑到列表中的元素数量可能是任意大的。
_UnwindowedValues
提供了可迭代接口来访问可能具有任何大小的这组元素,并且可能无法将整个元素保留在内存中。
Direct Runner返回列表的事实是一个不一致的问题,修复了几个版本的Beam之前。在数据流中,GroupByKey
的结果不是以列表的形式出现,并且不支持len
- 但 可迭代。
简而言之,在执行http_request_num = len(row_list)
之前,您可以将其强制转换为支持len的类型,例如:
row_list = list(pairs_same_group[1])
http_request_num = len(row_list)
但认为列表可能非常大。