在sklearn中,可以定义一个串行管道,以便为管道的所有连续部分获得最佳的超参数组合。串行管道可以实现如下:
from sklearn.svm import SVC
from sklearn import decomposition, datasets
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
digits = datasets.load_digits()
X_train = digits.data
y_train = digits.target
#Use Principal Component Analysis to reduce dimensionality
# and improve generalization
pca = decomposition.PCA()
# Use a linear SVC
svm = SVC()
# Combine PCA and SVC to a pipeline
pipe = Pipeline(steps=[('pca', pca), ('svm', svm)])
# Check the training time for the SVC
n_components = [20, 40, 64]
params_grid = {
'svm__C': [1, 10, 100, 1000],
'svm__kernel': ['linear', 'rbf'],
'svm__gamma': [0.001, 0.0001],
'pca__n_components': n_components,
}
但是如果我想为管道的每个步骤尝试不同的算法呢?我怎么能... gridsearch over
主成分分析或奇异值分解和 支持向量机或随机森林
这将需要某种第二级或"元网格搜索",因为模型的类型将是超参数之一。这可能在sklearn?
答案 0 :(得分:4)
Pipeline在其None
(估算器列表)中支持steps
,可以切换管道的某些部分。
您可以将None
参数传递给管道的named_steps
,以便通过设置传递给GridSearchCV的参数来使用该估算工具。
假设您要使用PCA
和TruncatedSVD
。
pca = decomposition.PCA()
svd = decomposition.TruncatedSVD()
svm = SVC()
n_components = [20, 40, 64]
在管道中添加svd
pipe = Pipeline(steps=[('pca', pca), ('svd', svd), ('svm', svm)])
# Change params_grid -> Instead of dict, make it a list of dict**
# In the first element, pass `svd = None`, and in second `pca = None`
params_grid = [{
'svm__C': [1, 10, 100, 1000],
'svm__kernel': ['linear', 'rbf'],
'svm__gamma': [0.001, 0.0001],
'pca__n_components': n_components,
'svd':[None]
},
{
'svm__C': [1, 10, 100, 1000],
'svm__kernel': ['linear', 'rbf'],
'svm__gamma': [0.001, 0.0001],
'pca':[None],
'svd__n_components': n_components,
'svd__algorithm':['randomized']
}]
现在只需将管道对象传递给gridsearchCV
grd = GridSearchCV(pipe, param_grid = params_grid)
调用grd.fit()
将在params_grid
列表的两个元素上搜索参数,一次使用一个值中的所有值。
如果您的" OR"中有两个估算器具有与此情况相同的参数名称,其中PCA
和TruncatedSVD
具有n_components
(或者您只想搜索此参数,这可以简化为:
#Here I have changed the name to `preprocessor`
pipe = Pipeline(steps=[('preprocessor', pca), ('svm', svm)])
#Now assign both estimators to `preprocessor` as below:
params_grid = {
'svm__C': [1, 10, 100, 1000],
'svm__kernel': ['linear', 'rbf'],
'svm__gamma': [0.001, 0.0001],
'preprocessor':[pca, svd],
'preprocessor__n_components': n_components,
}
此计划的推广
我们可以创建一个功能,可以使用适当的值自动填充要提供给param_grid
的{{1}}: -
GridSearchCV
在任意数量的变压器和估算器上使用此功能
def make_param_grids(steps, param_grids):
final_params=[]
# Itertools.product will do a permutation such that
# (pca OR svd) AND (svm OR rf) will become ->
# (pca, svm) , (pca, rf) , (svd, svm) , (svd, rf)
for estimator_names in itertools.product(*steps.values()):
current_grid = {}
# Step_name and estimator_name should correspond
# i.e preprocessor must be from pca and select.
for step_name, estimator_name in zip(steps.keys(), estimator_names):
for param, value in param_grids.get(estimator_name).iteritems():
if param == 'object':
# Set actual estimator in pipeline
current_grid[step_name]=[value]
else:
# Set parameters corresponding to above estimator
current_grid[step_name+'__'+param]=value
#Append this dictionary to final params
final_params.append(current_grid)
return final_params
现在使用上面# add all the estimators you want to "OR" in single key
# use OR between `pca` and `select`,
# use OR between `svm` and `rf`
# different keys will be evaluated as serial estimator in pipeline
pipeline_steps = {'preprocessor':['pca', 'select'],
'classifier':['svm', 'rf']}
# fill parameters to be searched in this dict
all_param_grids = {'svm':{'object':SVC(),
'C':[0.1,0.2]
},
'rf':{'object':RandomForestClassifier(),
'n_estimators':[10,20]
},
'pca':{'object':PCA(),
'n_components':[10,20]
},
'select':{'object':SelectKBest(),
'k':[5,10]
}
}
# Call the method on the above declared variables
param_grids_list = make_param_grids(pipeline_steps, all_param_grids)
pipeline_steps
现在,最后设置gridSearchCV对象并拟合数据
# The PCA() and SVC() used here are just to initialize the pipeline,
# actual estimators will be used from our `param_grids_list`
pipe = Pipeline(steps=[('preprocessor',PCA()), ('classifier', SVC())])