Customer id Year a b
1 2000 10 2
1 2001 5 3
1 2002 NA 4
1 2003 NA 5
2 2000 2 NA
2 2001 NA 4
2 2002 4 NA
2 2003 8 10
3 2000 9 NA
3 2001 10 NA
3 2002 11 12
答案 0 :(得分:4)
您可以执行以下操作:
require(dplyr)
impute_median <- function(x){
ind_na <- is.na(x)
x[ind_na] <- median(x[!ind_na])
as.numeric(x)
}
dat %>%
group_by(Customer_id) %>%
mutate_at(vars(a, b), impute_median)
答案 1 :(得分:0)
data.table
解决方案:
dat[, `:=` (a= ifelse(is.na(a), median(a, na.rm=TRUE), a)
b= ifelse(is.na(a), median(b, na.rm=TRUE), b)), by= "Customer_id"]
这应该是,并且比上面的@ Floo0解决方案更快,因为他对每列进行了两次扫描。
library(data.table)
library(microbenchmark)
set.seed(1234L)
dat <- data.frame(id= rep(c(1:10), each= 100),
a= rnorm(1000),
b= rnorm(1000))
dat[,2:3] <- apply(dat[,2:3], 2, function(j) {
idx <- sample.int(1000, 100, replace=F)
j[idx] <- NA
return(j)
})
require(dplyr)
impute_median <- function(x){
ind_na <- is.na(x)
x[ind_na] <- median(x[!ind_na])
as.numeric(x)
}
dat2 <- setDT(dat)
microbenchmark(Floo0= {dat %>%
group_by(id) %>%
mutate_at(vars(a, b), impute_median)},
alex= {dat[, `:=` (a= ifelse(is.na(a), median(a, na.rm=TRUE), a),
b= ifelse(is.na(a), median(b, na.rm=TRUE), b)), by= "id"]})
Unit: milliseconds
expr min lq mean median uq max neval cld
Floo0 3.703411 3.851565 4.216543 3.947955 4.167063 7.67234 100 b
alex 1.265559 1.430002 1.704431 1.486006 1.687710 5.21753 100 a