我正在尝试使用python的networkx绘制网络。
我有两种类型的节点,这些类型的节点应该分开放置。如何单独放置不同类型的节点?
例如,请参阅以下节点。
我希望将红色节点(狗,牛,猫)与蓝色节点(汽车,笔,纸,杯)分开,如下图所示。
所以,我的问题是 networkx
如何绘制这些网络,这些网络将上述图像组合在一起??
作为参考,我粘贴绘制第一张图像的代码。
import networkx as nx
import matplotlib.pyplot as plt
G = nx.Graph()
target_word_list = ["dog", "cow", "cat"] # represented by red nodes
attribute_word_list = ["car", "pen","paper", "cup"] # represented by blue nodes
word_list = target_word_list + attribute_word_list
for i in range(0, len(word_list)):
G.add_node(i)
pos=nx.spring_layout(G) # positions for all nodes
# draw nodes
nx.draw_networkx_nodes(G,pos,
nodelist=range(0, len(target_word_list)),
node_color='r',
node_size=50, alpha=0.8)
nx.draw_networkx_nodes(G,pos,
nodelist=range(len(target_word_list), len(word_list)),
node_color='b',
node_size=50, alpha=0.8)
labels = {}
for idx, target_word in enumerate(target_word_list):
labels[idx] = target_word
for idx, attribute_word in enumerate(attribute_word_list):
labels[len(target_word_list)+idx] = attribute_word
nx.draw_networkx_labels(G,pos,labels,font_size=14)
plt.axis('off')
答案 0 :(得分:1)
您可以手动上下移动一组中节点的y坐标。
因此,如果您的节点坐标位于pos
:
for i in range(0, len(word_list)):
if word_list[i] in attribute_word_list:
pos[i][1] += 4
这会将第二组中的节点向上移动。
您的整个代码:
import networkx as nx
import matplotlib.pyplot as plt
G = nx.Graph()
target_word_list = ["dog", "cow", "cat"] # represented by red nodes
attribute_word_list = ["car", "pen","paper", "cup"] # represented by blue nodes
word_list = target_word_list + attribute_word_list
for i in range(0, len(word_list)):
G.add_node(i)
pos=nx.spring_layout(G) # positions for all nodes
# if node is in second group, move it up
for i in range(0, len(word_list)):
if word_list[i] in attribute_word_list:
pos[i][1] += 4
# draw nodes
nx.draw_networkx_nodes(G,pos,
nodelist=range(0, len(target_word_list)),
node_color='r',
node_size=50, alpha=0.8)
nx.draw_networkx_nodes(G,pos,
nodelist=range(len(target_word_list), len(word_list)),
node_color='b',
node_size=50, alpha=0.8)
labels = {}
for idx, target_word in enumerate(target_word_list):
labels[idx] = target_word
for idx, attribute_word in enumerate(attribute_word_list):
labels[len(target_word_list)+idx] = attribute_word
nx.draw_networkx_labels(G,pos,labels,font_size=14)
plt.axis('off')
plt.show()
输出: