在theano布局中,我的代码依赖于tensorflow图像维度排序。
converting weights between the formats上有一个指南。
但这似乎破了。在将theano转换为tensorflow的部分中,第一条指令是将权重加载到张量流模型中。
在这种情况下,Keras后端应该是TensorFlow。 首先,将Theano训练的权重加载到TensorFlow模型中:
model.load_weights('my_weights_theano.h5')
这引发了一个例外,重量布局将是不兼容的。
如果load_weights
函数对张量流模型采用theano权重,则不需要转换它们。
我看了convert_kernel
函数,看看我是否可以自己做必要的步骤。
代码相当简单 - 我不明白为什么指南会使用张量流会话。这似乎没必要。
我已经从预训练模型中复制了代码,以创建具有张量流层的模型。这只是意味着在添加任何Convolutions之前更改输入形状和backend.image_dim_ordering
。
然后我用了这个循环:
model
是原始模型,是根据我在开头链接的代码创建的。
model_tensorflow
是完全相同的模型,但具有张量流布局。
for i in range(len(model.layers)):
layer_theano=model.layers[i]
layer_tensorflow=model_tensorflow.layers[i]
if layer_theano.__class__.__name__ in ['Convolution1D', 'Convolution2D', 'Convolution3D', 'AtrousConvolution2D']:
weights_theano=layer_theano.get_weights()
kernel=weights_theano[0]
bias=weights_theano[1]
converted_kernel=convert_kernel(kernel, "th")
converted_kernel=converted_kernel.transpose((3,2,1,0))
weights_tensorflow=[converted_kernel, bias]
layer_tensorflow.set_weights(weights_tensorflow)
else:
layer_tensorflow.set_weights(layer_theano.get_weights())
在原始代码中,有一个测试用例:预测在猫的图像上运行。 我已经下载了猫图像并尝试了原始模型的测试用例:285。 转换后的模型预测585。
我不知道285是否是猫的正确标签,但即使它不是,两个模型应该以相同的方式打破,我期望相同的预测。
在模型之间转换权重的正确方法是什么?
答案 0 :(得分:1)