我希望能够重新初始化隐藏图层2的权重,并将最终图层(out_layer)重塑为3个类而不是10个。
我希望能够在第二次会议上做到这一点 - 这意味着,在我恢复受过训练的模型之后。
我的主要目标是学习如何在tensorflow中进行转移学习,我认为通过这个例子,我将能够学到这一点。你能指点我应该做什么吗?我真的很想找,但找不到任何类似的例子..
答案 0 :(得分:-1)
我解决了。
可以通过执行以下操作重新初始化权重: 重要的部分是set_value,它接收会话,tensorflow变量和新的权重值
def _convert_string_dtype(dtype):
if dtype == 'float16':
return tf.float16
if dtype == 'float32':
return tf.float32
elif dtype == 'float64':
return tf.float64
elif dtype == 'int16':
return tf.int16
elif dtype == 'int32':
return tf.int32
elif dtype == 'int64':
return tf.int64
elif dtype == 'uint8':
return tf.int8
elif dtype == 'uint16':
return tf.uint16
else:
raise ValueError('Unsupported dtype:', dtype)
def set_value(sess, x, value):
"""Sets the value of a variable, from a Numpy array.
# Arguments
x: Tensor to set to a new value.
value: Value to set the tensor to, as a Numpy array
(of the same shape).
"""
value = np.asarray(value)
tf_dtype = _convert_string_dtype(x.dtype.name.split('_')[0])
if hasattr(x, '_assign_placeholder'):
assign_placeholder = x._assign_placeholder
assign_op = x._assign_op
else:
assign_placeholder = tf.placeholder(tf_dtype, shape=value.shape)
assign_op = x.assign(assign_placeholder)
x._assign_placeholder = assign_placeholder
x._assign_op = assign_op
return sess.run(assign_op, feed_dict={assign_placeholder: value})
# Tensorflow variable name
tf_var_name ="h2_weights"
var = [var for var in tf.global_variables() if var.op.name==tf_var_name][0]
var_shape = var.get_shape().as_list()
# Initialize to zero
new_weights = np.zeros(var_shape)
set_value(sess,var,new_weights)