我使用itertools.combinations()
如下:
import itertools
import numpy as np
L = [1,2,3,4,5]
N = 3
output = np.array([a for a in itertools.combinations(L,N)]).T
这使我得到了我需要的输出:
array([[1, 1, 1, 1, 1, 1, 2, 2, 2, 3],
[2, 2, 2, 3, 3, 4, 3, 3, 4, 4],
[3, 4, 5, 4, 5, 5, 4, 5, 5, 5]])
我在多处理环境中反复使用这个表达式,我需要它尽可能快。
来自this post我了解基于itertools
的代码不是最快的解决方案,使用numpy
可能是一种改进,但我不够好numpy
优化技巧,以理解和调整在那里编写的迭代代码或提出我自己的优化。
非常感谢任何帮助。
编辑:
L
来自一个pandas数据帧,所以它也可以看作是一个numpy数组:
L = df.L.values
答案 0 :(得分:2)
这肯定不比def nd_triu_indices(T,N):
o=np.array(np.meshgrid(*(np.arange(len(T)),)*N))
return np.array(T)[o[...,np.all(o[1:]>o[:-1],axis=0)]]
%timeit np.array(list(itertools.combinations(T,N))).T
The slowest run took 4.40 times longer than the fastest. This could mean that an intermediate result is being cached.
100000 loops, best of 3: 8.6 µs per loop
%timeit nd_triu_indices(T,N)
The slowest run took 4.64 times longer than the fastest. This could mean that an intermediate result is being cached.
10000 loops, best of 3: 52.4 µs per loop
更快,但它 矢量化numpy:
combinations
不确定这是否是可矢量化的另一种方式,或者如果这里的一个优化向导可以使这种方法更快。
编辑:用另一种方式提出,但仍然不比%timeit np.array(T)[np.array(np.where(np.fromfunction(lambda *i: np.all(np.array(i)[1:]>np.array(i)[:-1], axis=0),(len(T),)*N,dtype=int)))]
The slowest run took 7.78 times longer than the fastest. This could mean that an intermediate result is being cached.
10000 loops, best of 3: 34.3 µs per loop
:
_ =
答案 1 :(得分:2)
这是一个比itertools UPDATE稍微快一点的那个:而且其中一个(import numpy as np
import itertools
import timeit
def nump(n, k, i=0):
if k == 1:
a = np.arange(i, i+n)
return tuple([a[None, j:] for j in range(n)])
template = nump(n-1, k-1, i+1)
full = np.r_[np.repeat(np.arange(i, i+n-k+1),
[t.shape[1] for t in template])[None, :],
np.c_[template]]
return tuple([full[:, j:] for j in np.r_[0, np.add.accumulate(
[t.shape[1] for t in template[:-1]])]])
def nump2(n, k):
a = np.ones((k, n-k+1), dtype=int)
a[0] = np.arange(n-k+1)
for j in range(1, k):
reps = (n-k+j) - a[j-1]
a = np.repeat(a, reps, axis=1)
ind = np.add.accumulate(reps)
a[j, ind[:-1]] = 1-reps[1:]
a[j, 0] = j
a[j] = np.add.accumulate(a[j])
return a
def itto(L, N):
return np.array([a for a in itertools.combinations(L,N)]).T
k = 6
n = 12
N = np.arange(n)
assert np.all(nump2(n,k) == itto(N,k))
print('numpy ', timeit.timeit('f(a,b)', number=100, globals={'f':nump, 'a':n, 'b':k}))
print('numpy 2 ', timeit.timeit('f(a,b)', number=100, globals={'f':nump2, 'a':n, 'b':k}))
print('itertools', timeit.timeit('f(a,b)', number=100, globals={'f':itto, 'a':N, 'b':k}))
)实际上要快得多:
k = 3, n = 50
numpy 0.06967267207801342
numpy 2 0.035096961073577404
itertools 0.7981023890897632
k = 3, n = 10
numpy 0.015058324905112386
numpy 2 0.0017436158377677202
itertools 0.004743851954117417
k = 6, n = 12
numpy 0.03546895203180611
numpy 2 0.00997065706178546
itertools 0.05292179994285107
时序:
LoginProcessingFilter