我正在尝试执行图像相关以找到一组20帧中的哪一帧(该组存储在3D数组中,x)与给定帧(存储为2D数组,y)最佳匹配。此步骤必须执行1000次。
我尝试对代码进行矢量化以使其运行得更快。但不知何故,矢量化使代码需要两倍的时间。我可能在向量化过程中做错了,这使得它变慢。
这是代码
import numpy as np
import time
def corr2(a,b):
#Getting shapes and prealocating the auxillairy variables
k = np.shape(a)
#Calculating mean values
AM=np.mean(a)
BM=np.mean(b)
#calculate vectors
c_vect = (a-AM)*(b-BM)
d_vect = (a-AM)**2
e_vect = (b-BM)**2
#Formula itself
r_out = np.sum(c_vect)/float(np.sqrt(np.sum(d_vect)*np.sum(e_vect)))
return r_out
def ZZ_1X_v1_MCC(R,RefImage):
from img_proccessing import corr2
Cor = np.zeros(R.shape[2])
for t in range(R.shape[2]):
Cor[t]=corr2(RefImage,R[:,:,t]) #Correlation
#report
max_correlationvalue_intermediate = np.amax(Cor)
max_correlatedframe_intermediate = np.argmax(Cor)
max_correlatedframeandvalue = [max_correlatedframe_intermediate,max_correlationvalue_intermediate];
return max_correlatedframeandvalue
def ZZ_1X_v1_MCC_vectorized(R,RefImage):
R_shape = np.asarray(np.shape(R))
R_flattened = R.swapaxes(0,2).reshape(R_shape[2],R_shape[0]*R_shape[1])
AA = np.transpose(R_flattened)
RefImageflattened = RefImage.transpose().ravel()
#Calculating mean subtracted values
AAM = AA - np.mean(AA,axis=0)
BM = RefImageflattened - np.mean(RefImageflattened)
#calculate vectors
DD_vect = AAM**2
E_vect = BM**2
EE_vect = np.transpose(np.tile(np.transpose(E_vect),(R_shape[2],1)))
CC_vect = AAM*np.transpose(np.tile(BM,(R_shape[2],1)))
#Formula itself
Cor = np.sum(CC_vect,axis=0)/np.sqrt((np.sum(DD_vect,axis=0)*np.sum(EE_vect,axis=0)).astype(float))
#report
max_correlationvalue_intermediate = np.amax(Cor)
max_correlatedframe_intermediate = np.argmax(Cor)
max_correlatedframeandvalue = [max_correlatedframe_intermediate,max_correlationvalue_intermediate];
return max_correlatedframeandvalue
x = np.arange(400000).reshape((20,200,100)).swapaxes(0,2) #3D array with 20 frames
y = np.transpose(np.arange(20000).reshape((200,100))) #2D array with 1 frame
# using for loop
tic = time.time()
for i in range(500):
[a,b] = ZZ_1X_v1_MCC(x,y)
print(time.time() - tic)
# using vectorization
tic = time.time()
for i in range(500):
[a,b] = ZZ_1X_v1_MCC_vectorized(x,y)
print(time.time() - tic)