我正在尝试将下面的列表传递给sql查询
x = ['1000000000164774783','1000000000253252111']
我使用 sqlalchemy 和 pyodbc 连接到sql:
import pandas as pd
from pandas import Series,DataFrame
import pyodbc
import sqlalchemy
cnx=sqlalchemy.create_engine("mssql+pyodbc://Omnius:MainBrain1@172.31.163.135:1433/Basis?driver=/opt/microsoft/sqlncli/lib64/libsqlncli-11.0.so.1790.0")
我尝试使用各种字符串格式函数在sql查询中使用。下面是其中之一
xx = ', '.join(x)
sql = "select * from Pretty_Txns where Send_Customer in (%s)" % xx
df = pd.read_sql(sql,cnx)
所有这些似乎都将其转换为数字格式
(1000000000164774783, 1000000000253252111) instead of ('1000000000164774783','1000000000253252111')
因此查询失败,因为SQL中的Send_Customer的数据类型为 varchar(50)
ProgrammingError: (pyodbc.ProgrammingError) ('42000', '[42000] [Microsoft][SQL Server Native Client 11.0]
[SQL Server]Error converting data type varchar to numeric. (8114) (SQLExecDirectW)')
[SQL: 'select * from Pretty_Txns where Send_Customer in (1000000000164774783, 1000000000253252111)']
答案 0 :(得分:4)
正如对其他答案的评论所述,该方法可能因各种原因而失败。你真正想做的是创建一个带有所需参数占位符数量的SQL语句,然后使用params=
read_sql
参数来提供值:
x = ['1000000000164774783','1000000000253252111']
placeholders = ','.join('?' for i in range(len(x))) # '?,?'
sql = "select * from Pretty_Txns where Send_Customer in (%s)" % placeholders
df = pd.read_sql(sql, cnx, params=x)
答案 1 :(得分:0)
让sqlalchemey, pyodbc
与熊猫read_sql()
一起工作是一件令人毛骨悚然的事情。经过许多挫折并遇到pandas和psycopg的各种解决方案和文档之后,这是使用命名参数进行查询的正确方法(到目前为止):
import pandas as pd
import psycopg2
# import pyodbc
import sqlalchemy
from sqlalchemy import text # this is crucial
cnx=sqlalchemy.create_engine(...)
x = ['1000000000164774783','1000000000253252111']
sql = "select * from Pretty_Txns where Send_Customer in (:id);" # named parameter
df = pd.read_sql(text(sql), cnx, params={'id':x}) # note how `sql`
# string is cast with text()
# and key-pair value is passed for
# named parameter 'id'
df.head()
我已经使其与PostgreSQL数据库一起使用。我希望MySQL不会有太大的不同。
答案 2 :(得分:0)
这是您需要的 SQL 查询
sql = f"select * from Pretty_Txns where Send_Customer in {tuple(x)}"
df = pd.read_sql(sql,cnx)
答案 3 :(得分:-1)
使用以下方法,它运行良好:
sql = "select * from Pretty_Txns where Send_Customer in %s" % str(tuple(x))
df = pd.read_sql(sql,cnx)