我一直在运行以下代码,它返回正确的系数。但是,无论我在哪里拨打plot
电话,我都无法获得任何情节输出。
我不确定这里是否需要可重复的示例,因为我认为可以通过查看下面的gradientDescent
函数来解决这个问题?这是我第一次尝试在R中运行此算法:
gradientDescent <- function(x, y, learn_rate, conv_threshold, n, max_iter) {
m <- runif(1, 0, 1)
c <- runif(1, 0, 1)
yhat <- m * x + c
cost_error <- (1 / (n + 2)) * sum((y - yhat) ^ 2)
converged = F
iterations = 0
while(converged == F) {
m_new <- m - learn_rate * ((1 / n) * (sum((yhat - y) * x)))
c_new <- c - learn_rate * ((1 / n) * (sum(yhat - y)))
m <- m_new
c <- c_new
yhat <- m * x + c
cost_error_new <- (1 / (n + 2)) * sum((y - yhat) ^ 2)
if(cost_error - cost_error_new <= conv_threshold) {
converged = T
}
iterations = iterations + 1
if(iterations > max_iter) {
converged = T
return(paste("Optimal intercept:", c, "Optimal slope:", m))
}
}
}
答案 0 :(得分:1)
目前还不清楚你一直在做什么是无效的。即使在函数内部使用,基本图形函数plot
和abline
也应该能够生成输出。 Lattice和ggplot2图形基于grid
- grpahics,因此需要在函数调用周围创建一个print()
来创建输出(如R-FAQ中所述)。所以试试这个:
gradientDescent <- function(x, y, learn_rate, conv_threshold, n, max_iter)
{ ## plot.new() perhaps not needed
plot(x,y)
m <- runif(1, 0, 1)
c <- runif(1, 0, 1)
yhat <- m * x + c
cost_error <- (1 / (n + 2)) * sum((y - yhat) ^ 2)
converged = F
iterations = 0
while(converged == F) {
m_new <- m - learn_rate * ((1 / n) * (sum((yhat - y) * x)))
c_new <- c - learn_rate * ((1 / n) * (sum(yhat - y)))
m <- m_new
c <- c_new
yhat <- m * x + c
cost_error_new <- (1 / (n + 2)) * sum((y - yhat) ^ 2)
if(cost_error - cost_error_new <= conv_threshold) {
converged = T
}
iterations = iterations + 1
if(iterations > max_iter) { abline( c, m) #calculated
dev.off()
converged = T
return(paste("Optimal intercept:", c, "Optimal slope:", m))
}
}
}