我正在使用concurrent.futures.ProcessPoolExecutor
来查找数字范围内数字的出现。目的是调查从并发中获得的加速性能的数量。为了测试性能,我有一个控件 - 一个执行所述任务的串行代码(如下所示)。我编写了2个并发代码,一个使用concurrent.futures.ProcessPoolExecutor.submit()
,另一个使用concurrent.futures.ProcessPoolExecutor.map()
执行相同的任务。它们如下所示。有关起草前者和后者的建议可分别见here和here。
发给所有三个代码的任务是在0到1E8的数字范围内找到数字5的出现次数。 .submit()
和.map()
都分配了6名工作人员,而.map()
的分组大小为10,000。在并发代码中,分离工作负载的方式是相同的。但是,用于在两个代码中查找出现的函数是不同的。这是因为参数传递给.submit()
和.map()
调用的函数的方式不同。
所有3个代码报告的发生次数相同,即56,953,279次。但是,完成任务所需的时间非常不同。 .submit()
执行速度比对照快2倍,而.map()
的速度是对照的两倍,以完成任务。
问题:
.map()
的缓慢性能是否是我编码的工件,或者它本身就很慢?"如果是前者,我该如何改进呢。令我感到惊讶的是,它表现得比对照慢,因为没有太大的动力去使用它。.submit()
代码执行得更快。我遇到的一个条件是函数_concurrent_submit()
必须返回一个包含数字5的数字/出现次数的迭代。concurrent.futures.ProcessPoolExecutor.submit()
#!/usr/bin/python3.5
# -*- coding: utf-8 -*-
import concurrent.futures as cf
from time import time
from traceback import print_exc
def _findmatch(nmin, nmax, number):
'''Function to find the occurrence of number in range nmin to nmax and return
the found occurrences in a list.'''
print('\n def _findmatch', nmin, nmax, number)
start = time()
match=[]
for n in range(nmin, nmax):
if number in str(n):
match.append(n)
end = time() - start
print("found {0} in {1:.4f}sec".format(len(match),end))
return match
def _concurrent_submit(nmax, number, workers):
'''Function that utilises concurrent.futures.ProcessPoolExecutor.submit to
find the occurences of a given number in a number range in a parallelised
manner.'''
# 1. Local variables
start = time()
chunk = nmax // workers
futures = []
found =[]
#2. Parallelization
with cf.ProcessPoolExecutor(max_workers=workers) as executor:
# 2.1. Discretise workload and submit to worker pool
for i in range(workers):
cstart = chunk * i
cstop = chunk * (i + 1) if i != workers - 1 else nmax
futures.append(executor.submit(_findmatch, cstart, cstop, number))
# 2.2. Instruct workers to process results as they come, when all are
# completed or .....
cf.as_completed(futures) # faster than cf.wait()
# 2.3. Consolidate result as a list and return this list.
for future in futures:
for f in future.result():
try:
found.append(f)
except:
print_exc()
foundsize = len(found)
end = time() - start
print('within statement of def _concurrent_submit():')
print("found {0} in {1:.4f}sec".format(foundsize, end))
return found
if __name__ == '__main__':
nmax = int(1E8) # Number range maximum.
number = str(5) # Number to be found in number range.
workers = 6 # Pool of workers
start = time()
a = _concurrent_submit(nmax, number, workers)
end = time() - start
print('\n main')
print('workers = ', workers)
print("found {0} in {1:.4f}sec".format(len(a),end))
concurrent.futures.ProcessPoolExecutor.map()
#!/usr/bin/python3.5
# -*- coding: utf-8 -*-
import concurrent.futures as cf
import itertools
from time import time
from traceback import print_exc
def _findmatch(listnumber, number):
'''Function to find the occurrence of number in another number and return
a string value.'''
#print('def _findmatch(listnumber, number):')
#print('listnumber = {0} and ref = {1}'.format(listnumber, number))
if number in str(listnumber):
x = listnumber
#print('x = {0}'.format(x))
return x
def _concurrent_map(nmax, number, workers):
'''Function that utilises concurrent.futures.ProcessPoolExecutor.map to
find the occurrences of a given number in a number range in a parallelised
manner.'''
# 1. Local variables
start = time()
chunk = nmax // workers
futures = []
found =[]
#2. Parallelization
with cf.ProcessPoolExecutor(max_workers=workers) as executor:
# 2.1. Discretise workload and submit to worker pool
for i in range(workers):
cstart = chunk * i
cstop = chunk * (i + 1) if i != workers - 1 else nmax
numberlist = range(cstart, cstop)
futures.append(executor.map(_findmatch, numberlist,
itertools.repeat(number),
chunksize=10000))
# 2.3. Consolidate result as a list and return this list.
for future in futures:
for f in future:
if f:
try:
found.append(f)
except:
print_exc()
foundsize = len(found)
end = time() - start
print('within statement of def _concurrent(nmax, number):')
print("found {0} in {1:.4f}sec".format(foundsize, end))
return found
if __name__ == '__main__':
nmax = int(1E8) # Number range maximum.
number = str(5) # Number to be found in number range.
workers = 6 # Pool of workers
start = time()
a = _concurrent_map(nmax, number, workers)
end = time() - start
print('\n main')
print('workers = ', workers)
print("found {0} in {1:.4f}sec".format(len(a),end))
序列号:
#!/usr/bin/python3.5
# -*- coding: utf-8 -*-
from time import time
def _serial(nmax, number):
start = time()
match=[]
nlist = range(nmax)
for n in nlist:
if number in str(n):match.append(n)
end=time()-start
print("found {0} in {1:.4f}sec".format(len(match),end))
return match
if __name__ == '__main__':
nmax = int(1E8) # Number range maximum.
number = str(5) # Number to be found in number range.
start = time()
a = _serial(nmax, number)
end = time() - start
print('\n main')
print("found {0} in {1:.4f}sec".format(len(a),end))
2017年2月13日更新:
除了@niemmi的答案,我还提供了一些个人研究后的答案:
.map()
和.submit()
解决方案,ProcessPoolExecutor.map()
可以带来比ProcessPoolExecutor.submit()
更快的速度。答案 0 :(得分:7)
<强>概述:强>
我的回答分为两部分:
ProcessPoolExecutor.map()
解决方案中获得更多的加速。ProcessPoolExecutor
的子类.submit()
和.map()
何时产生非等效计算时间。<强> ============================================ =========================== 强>
第1部分:ProcessPoolExecutor.map()的更多加速
<强>背景强>
本节以@ niemmi的.map()
解决方案为基础,该解决方案本身非常出色。在对他的离散化方案进行一些研究以更好地理解如何与.map()chunksizes争论进行交互时,我发现了这个有趣的解决方案。
我认为@ niemmi的chunk = nmax // workers
定义是chunksize的定义,即工作池中每个工作人员要处理的实际数字范围(给定任务)的较小大小。现在,这个定义的前提是假设一台计算机有x个工人,在每个工人之间平均分配任务将导致每个工人的最佳使用,因此总任务将最快完成。因此,分解给定任务的块数应始终等于池工作者的数量。但是,这个假设是否正确?
命题:在此,我建议上述假设与ProcessPoolExecutor.map()
一起使用时并不总能带来最快的计算时间。相反,将任务分离到大于池工作者数量的数量可以导致加速,即更快完成给定任务。
实验:我修改了@ niemmi的代码,以允许离散任务的数量超过池工作者的数量。下面给出了该代码,用于表示数字5出现在0到1E8的数字范围内的次数。我已经使用1,2,4和6个池工作者以及离散任务数量与池工作者数量的不同比率执行此代码。对于每个方案,进行了3次运行并将计算时间制成表格。 &#34; 提速&#34;此处定义为使用相同数量的块和池工作者的平均计算时间,而不是离散任务数大于池工作者数的平均计算时间。
<强>调查结果:强>
左图显示了实验部分中提到的所有方案所花费的计算时间。它表明块数/工人数= 1 所花费的计算时间总是大于块数&gt;所花费的计算时间。工人数量。也就是说,前一种情况的效率总是低于后者。
右图显示当块数/工人数达到阈值14或更高时,获得了1.2倍或更多的加速< / strong>即可。有趣的是,当1名工人执行ProcessPoolExecutor.map()
时,也出现了加速趋势。
结论:在自定义ProcessPoolExecutor.map()`应该用于解决给定任务的离散任务的数量时,谨慎的做法是确保此数字大于池工作者数量这种做法缩短了计算时间。
concurrent.futures.ProcessPoolExecutor.map()代码。 (仅限修订部分)
def _concurrent_map(nmax, number, workers, num_of_chunks):
'''Function that utilises concurrent.futures.ProcessPoolExecutor.map to
find the occurrences of a given number in a number range in a parallelised
manner.'''
# 1. Local variables
start = time()
chunksize = nmax // num_of_chunks
futures = []
found =[]
#2. Parallelization
with cf.ProcessPoolExecutor(max_workers=workers) as executor:
# 2.1. Discretise workload and submit to worker pool
cstart = (chunksize * i for i in range(num_of_chunks))
cstop = (chunksize * i if i != num_of_chunks else nmax
for i in range(1, num_of_chunks + 1))
futures = executor.map(_findmatch, cstart, cstop,
itertools.repeat(number))
# 2.2. Consolidate result as a list and return this list.
for future in futures:
#print('type(future)=',type(future))
for f in future:
if f:
try:
found.append(f)
except:
print_exc()
foundsize = len(found)
end = time() - start
print('\n within statement of def _concurrent(nmax, number):')
print("found {0} in {1:.4f}sec".format(foundsize, end))
return found
if __name__ == '__main__':
nmax = int(1E8) # Number range maximum.
number = str(5) # Number to be found in number range.
workers = 4 # Pool of workers
chunks_vs_workers = 14 # A factor of =>14 can provide optimum performance
num_of_chunks = chunks_vs_workers * workers
start = time()
a = _concurrent_map(nmax, number, workers, num_of_chunks)
end = time() - start
print('\n main')
print('nmax={}, workers={}, num_of_chunks={}'.format(
nmax, workers, num_of_chunks))
print('workers = ', workers)
print("found {0} in {1:.4f}sec".format(len(a),end))
<强> ============================================ =========================== 强>
第2部分:使用ProcessPoolExecutor子类时的总计算时间.submit()和.map()在返回排序/排序结果列表时可能不同。
背景:我修改了.submit()
和.map()
代码以允许&#34; apple-to-apple&#34;比较他们的计算时间和可视化主代码的计算时间的能力,主代码调用的_concurrent方法执行并发操作的计算时间,以及_concurrent调用的每个离散化任务/工作者的计算时间方法。此外,这些代码中的并发方法被构造为直接从.submit()
的未来对象和.map()
的迭代器返回结果的无序和有序列表。源代码如下(希望它可以帮助您。)。
实验这两个新改进的代码用于执行第1部分中描述的相同实验,除了只考虑了6个池工作者并且python内置list
和{{ 1}}方法分别用于将结果的无序和有序列表返回到代码的主要部分。
sorted
的所有Future对象,并创建ProcessPoolExecutor.submit()
的迭代器,如离散任务数量与池工人数量的函数是等价的。此结果仅表示ProcessPoolExecutor.map()
子类ProcessPoolExecutor
和.submit()
同样有效/快速。.map()
和list
方法的计算时间量(以及这些方法中包含的其他方法的计算时间)。很明显,与sorted
方法相比,list
方法返回结果列表的计算时间更短。 .submit()和.map()代码的sorted
方法的平均计算时间相似,约为0.47秒。 .submit()和.map()代码的排序方法的平均计算时间分别为1.23秒和1.01秒。换句话说,list
方法分别比。list
方法对.submit()和.map()代码执行了2.62倍和2.15倍。 sorted
方法生成了有序列表
sorted
比.map()
更快,因为离散的数量
任务增加超过池工人数,保存时
离散任务的数量等于池工人的数量。
也就是说,这些调查结果表明,使用同样快速.submit()
或.submit()
子类的决定可能会受到排序方法的阻碍。例如,如果意图是在尽可能短的时间内生成有序列表,则ProcessPoolExecutor.map()的使用应优先于.map()
,因为ProcessPoolExecutor.submit()
可以允许最短的总计算时间。 .map()
和.submit()
子类的性能。在离散任务的数量等于池工人数量的情况下,加速量可高达20%。改进.map()代码
.map()
改进.submit()代码。
除了用以下代码替换_concurrent方法之外,此代码与.map代码相同:
#!/usr/bin/python3.5
# -*- coding: utf-8 -*-
import concurrent.futures as cf
from time import time
from itertools import repeat, chain
def _findmatch(nmin, nmax, number):
'''Function to find the occurence of number in range nmin to nmax and return
the found occurences in a list.'''
start = time()
match=[]
for n in range(nmin, nmax):
if number in str(n):
match.append(n)
end = time() - start
#print("\n def _findmatch {0:<10} {1:<10} {2:<3} found {3:8} in {4:.4f}sec".
# format(nmin, nmax, number, len(match),end))
return match
def _concurrent(nmax, number, workers, num_of_chunks):
'''Function that utilises concurrent.futures.ProcessPoolExecutor.map to
find the occurrences of a given number in a number range in a concurrent
manner.'''
# 1. Local variables
start = time()
chunksize = nmax // num_of_chunks
#2. Parallelization
with cf.ProcessPoolExecutor(max_workers=workers) as executor:
# 2.1. Discretise workload and submit to worker pool
cstart = (chunksize * i for i in range(num_of_chunks))
cstop = (chunksize * i if i != num_of_chunks else nmax
for i in range(1, num_of_chunks + 1))
futures = executor.map(_findmatch, cstart, cstop, repeat(number))
end = time() - start
print('\n within statement of def _concurrent_map(nmax, number, workers, num_of_chunks):')
print("found in {0:.4f}sec".format(end))
return list(chain.from_iterable(futures)) #Return an unordered result list
#return sorted(chain.from_iterable(futures)) #Return an ordered result list
if __name__ == '__main__':
nmax = int(1E8) # Number range maximum.
number = str(5) # Number to be found in number range.
workers = 6 # Pool of workers
chunks_vs_workers = 30 # A factor of =>14 can provide optimum performance
num_of_chunks = chunks_vs_workers * workers
start = time()
found = _concurrent(nmax, number, workers, num_of_chunks)
end = time() - start
print('\n main')
print('nmax={}, workers={}, num_of_chunks={}'.format(
nmax, workers, num_of_chunks))
#print('found = ', found)
print("found {0} in {1:.4f}sec".format(len(found),end))
<强> ============================================ =========================== 强>
答案 1 :(得分:2)
你在这里比较苹果和橘子。使用map
时,您会生成所有1E8
个数字并将它们传输到工作进程。与实际执行相比,这需要花费大量时间。使用submit
时,您只需创建6组传输参数。
如果您更改map
以使用相同的原则操作,您将获得彼此接近的数字:
def _findmatch(nmin, nmax, number):
'''Function to find the occurrence of number in range nmin to nmax and return
the found occurrences in a list.'''
print('\n def _findmatch', nmin, nmax, number)
start = time()
match=[]
for n in range(nmin, nmax):
if number in str(n):
match.append(n)
end = time() - start
print("found {0} in {1:.4f}sec".format(len(match),end))
return match
def _concurrent_map(nmax, number, workers):
'''Function that utilises concurrent.futures.ProcessPoolExecutor.map to
find the occurrences of a given number in a number range in a parallelised
manner.'''
# 1. Local variables
start = time()
chunk = nmax // workers
futures = []
found =[]
#2. Parallelization
with cf.ProcessPoolExecutor(max_workers=workers) as executor:
# 2.1. Discretise workload and submit to worker pool
cstart = (chunk * i for i in range(workers))
cstop = (chunk * i if i != workers else nmax for i in range(1, workers + 1))
futures = executor.map(_findmatch, cstart, cstop, itertools.repeat(number))
# 2.3. Consolidate result as a list and return this list.
for future in futures:
for f in future:
try:
found.append(f)
except:
print_exc()
foundsize = len(found)
end = time() - start
print('within statement of def _concurrent(nmax, number):')
print("found {0} in {1:.4f}sec".format(foundsize, end))
return found
您可以正确使用as_completed
来提高提交效果。对于给定的期货可迭代,它将返回一个迭代器,它将按照它们完成的顺序yield
期货。
您也可以跳过将数据复制到另一个数组并使用itertools.chain.from_iterable
将期货结果合并到单个可迭代数据中:
import concurrent.futures as cf
import itertools
from time import time
from traceback import print_exc
from itertools import chain
def _findmatch(nmin, nmax, number):
'''Function to find the occurrence of number in range nmin to nmax and return
the found occurrences in a list.'''
print('\n def _findmatch', nmin, nmax, number)
start = time()
match=[]
for n in range(nmin, nmax):
if number in str(n):
match.append(n)
end = time() - start
print("found {0} in {1:.4f}sec".format(len(match),end))
return match
def _concurrent_map(nmax, number, workers):
'''Function that utilises concurrent.futures.ProcessPoolExecutor.map to
find the occurrences of a given number in a number range in a parallelised
manner.'''
# 1. Local variables
chunk = nmax // workers
futures = []
found =[]
#2. Parallelization
with cf.ProcessPoolExecutor(max_workers=workers) as executor:
# 2.1. Discretise workload and submit to worker pool
for i in range(workers):
cstart = chunk * i
cstop = chunk * (i + 1) if i != workers - 1 else nmax
futures.append(executor.submit(_findmatch, cstart, cstop, number))
return chain.from_iterable(f.result() for f in cf.as_completed(futures))
if __name__ == '__main__':
nmax = int(1E8) # Number range maximum.
number = str(5) # Number to be found in number range.
workers = 6 # Pool of workers
start = time()
a = _concurrent_map(nmax, number, workers)
end = time() - start
print('\n main')
print('workers = ', workers)
print("found {0} in {1:.4f}sec".format(sum(1 for x in a),end))