多维lstm张量流

时间:2017-02-06 15:12:19

标签: tensorflow lstm

有人可以建议改进我的多维lstm实现吗?

它非常慢并且占用大量内存。

class MultiDimentionalLSTMCell(tf.nn.rnn_cell.RNNCell):
"""
Adapted from TF's BasicLSTMCell to use Layer Normalization.
Note that state_is_tuple is always True.
"""

def __init__(self, num_units, forget_bias=1.0, activation=tf.nn.tanh):
    self._num_units = num_units
    self._forget_bias = forget_bias
    self._activation = activation

@property
def state_size(self):
    return tf.nn.rnn_cell.LSTMStateTuple(self._num_units, self._num_units)

@property
def output_size(self):
    return self._num_units

def __call__(self, inputs, state, scope=None):
    """Long short-term memory cell (LSTM).
    @param: imputs (batch,n)
    @param state: the states and hidden unit of the two cells
    """
    with tf.variable_scope(scope or type(self).__name__):
        c1,c2,h1,h2 = state

        # change bias argument to False since LN will add bias via shift
        concat = tf.nn.rnn_cell._linear([inputs, h1, h2], 5 * self._num_units, False)

        i, j, f1, f2, o = tf.split(1, 5, concat)

        # add layer normalization to each gate
        #i =  ln(i, scope = 'i/')
        #j =  ln(j, scope = 'j/')
        #f1 = ln(f1, scope = 'f1/')
        #f2 = ln(f2, scope = 'f2/')
        #o =  ln(o, scope = 'o/')

        new_c = (c1 * tf.nn.sigmoid(f1 + self._forget_bias) + 
                 c2 * tf.nn.sigmoid(f2 + self._forget_bias) + tf.nn.sigmoid(i) *
               self._activation(j))

        # add layer_normalization in calculation of new hidden state
        new_h = self._activation(ln(new_c, scope = 'new_h/')) * tf.nn.sigmoid(o)
        new_state = tf.nn.rnn_cell.LSTMStateTuple(new_c, new_h)

        return new_h, new_state


def MultidimentionalRNN(rnn_size,input_data,sh,dims=None,scopeN="layer1"):
    """Implements naive multidimentional recurent neural networks

    @param rnn_size: the hidden units
    @param input_data: the data to process of shape [batch,h,w,chanels]
    @param sh: [heigth,width] of the windows 
    @param dims: dimentions to reverse the input data,eg.
        dims=[False,True,True,False] => true means reverse dimention
    @param scopeN : the scope

    returns [batch,h/sh[0],w/sh[1],chanels*sh[0]*sh[1]] the output of the lstm
    """
    with tf.variable_scope("MultiDimentionalLSTMCell-"+scopeN):
        cell = MultiDimentionalLSTMCell(rnn_size)

    shape = input_data.get_shape().as_list()
    # add paddings
    #todos: 
    #y = tf.cond(condition > 0, lambda: tf.matmul(x, W) + b, lambda: tf.matmul(x, W) - b)
    if shape[1]%sh[0] != 0:
        offset = tf.zeros([shape[0], sh[0]-(shape[1]%sh[0]), shape[2], shape[3]])
        input_data = tf.concat(1,[input_data,offset])
        shape = input_data.get_shape().as_list()
    if shape[2]%sh[1] != 0:
        offset = tf.zeros([shape[0], shape[1], sh[1]-(shape[2]%sh[1]), shape[3]])
        input_data = tf.concat(2,[input_data,offset])
        shape = input_data.get_shape().as_list()

    w,h = int(shape[1]/sh[0]),int(shape[2]/sh[1])
    features = sh[1]*sh[0]*shape[3]
    batch_size = shape[0]

    x =  tf.reshape(input_data, [batch_size,h,w, features])
    if dims is not None:
        x = tf.reverse(x, dims)  
    x = tf.transpose(x, [1,2,0,3])
    x =  tf.reshape(x, [-1, features])
    x = tf.split(0, h*w, x)
    states = []
    outputs = []
    #todo: add seq_len 2D (have to add paddings after)
    #use tf.get_variable()
    #result = tf.while_loop(condition, body, [x])
    with tf.variable_scope("MultiDimentionalRnn-"+scopeN) as scope:
        for i,inputs in enumerate(x): 
                #stateUp = tf.cond(i>=w, lambda: states[i-w], lambda: cell.zero_state(batch_size, tf.float32))
                stateUp = states[i-w] if i>=w else cell.zero_state(batch_size, tf.float32)
                #stateLast = tf.cond(i%w>0, lambda: states[i-1], lambda: cell.zero_state(batch_size, tf.float32))
                stateLast = states[i-1] if i%w>0 else cell.zero_state(batch_size, tf.float32)

                currentState = stateUp[0],stateLast[0],stateUp[1],stateLast[1]
                out , state = cell(inputs,currentState)                    
                states.append(state)
                outputs.append(out)
                scope.reuse_variables()
    outputs = tf.pack(outputs, axis=0)

    y =  tf.reshape(outputs, [h,w,batch_size,rnn_size])
    y = tf.transpose(y, [2,0,1,3])
    if dims is not None:
        y = tf.reverse(y, dims)

    return y

1 个答案:

答案 0 :(得分:2)

def ln(tensor, scope = None, epsilon = 1e-5):
    """ Layer normalizes a 2D tensor along its second axis """
    assert(len(tensor.get_shape()) == 2)
    m, v = tf.nn.moments(tensor, [1], keep_dims=True)
    if not isinstance(scope, str):
        scope = ''
    with tf.variable_scope(scope + 'layer_norm'):
        scale = tf.get_variable('scale',
                                shape=[tensor.get_shape()[1]],
                                initializer=tf.constant_initializer(1))
        shift = tf.get_variable('shift',
                                shape=[tensor.get_shape()[1]],
                                initializer=tf.constant_initializer(0))
    LN_initial = (tensor - m) / tf.sqrt(v + epsilon)

    return LN_initial * scale + shift


class MultiDimentionalLSTMCell(tf.nn.rnn_cell.RNNCell):
    """
    Adapted from TF's BasicLSTMCell to use Layer Normalization.
    Note that state_is_tuple is always True.
    """

    def __init__(self, num_units, forget_bias=0.0, activation=tf.nn.tanh):
        self._num_units = num_units
        self._forget_bias = forget_bias
        self._activation = activation

    @property
    def state_size(self):
        return tf.nn.rnn_cell.LSTMStateTuple(self._num_units, self._num_units)

    @property
    def output_size(self):
        return self._num_units

    def __call__(self, inputs, state, scope=None):
        """Long short-term memory cell (LSTM).
        @param: imputs (batch,n)
        @param state: the states and hidden unit of the two cells
        """
        with tf.variable_scope(scope or type(self).__name__):
            c1,c2,h1,h2 = state

            # change bias argument to False since LN will add bias via shift
            concat = tf.nn.rnn_cell._linear([inputs, h1, h2], 5 * self._num_units, False)

            i, j, f1, f2, o = tf.split(1, 5, concat)

            # add layer normalization to each gate
            i =  ln(i, scope = 'i/')
            j =  ln(j, scope = 'j/')
            f1 = ln(f1, scope = 'f1/')
            f2 = ln(f2, scope = 'f2/')
            o =  ln(o, scope = 'o/')

            new_c = (c1 * tf.nn.sigmoid(f1 + self._forget_bias) + 
                     c2 * tf.nn.sigmoid(f2 + self._forget_bias) + tf.nn.sigmoid(i) *
                   self._activation(j))

            # add layer_normalization in calculation of new hidden state
            new_h = self._activation(ln(new_c, scope = 'new_h/')) * tf.nn.sigmoid(o)
            new_state = tf.nn.rnn_cell.LSTMStateTuple(new_c, new_h)

            return new_h, new_state


def multiDimentionalRNN_whileLoop(rnn_size,input_data,sh,dims=None,scopeN="layer1"):
        """Implements naive multidimentional recurent neural networks

        @param rnn_size: the hidden units
        @param input_data: the data to process of shape [batch,h,w,chanels]
        @param sh: [heigth,width] of the windows 
        @param dims: dimentions to reverse the input data,eg.
            dims=[False,True,True,False] => true means reverse dimention
        @param scopeN : the scope

        returns [batch,h/sh[0],w/sh[1],chanels*sh[0]*sh[1]] the output of the lstm
        """
        with tf.variable_scope("MultiDimentionalLSTMCell-"+scopeN):
            cell = MultiDimentionalLSTMCell(rnn_size)

            shape = input_data.get_shape().as_list()

            if shape[1]%sh[0] != 0:
                offset = tf.zeros([shape[0], sh[0]-(shape[1]%sh[0]), shape[2], shape[3]])
                input_data = tf.concat(1,[input_data,offset])
                shape = input_data.get_shape().as_list()
            if shape[2]%sh[1] != 0:
                offset = tf.zeros([shape[0], shape[1], sh[1]-(shape[2]%sh[1]), shape[3]])
                input_data = tf.concat(2,[input_data,offset])
                shape = input_data.get_shape().as_list()

            h,w = int(shape[1]/sh[0]),int(shape[2]/sh[1])
            features = sh[1]*sh[0]*shape[3]
            batch_size = shape[0]

            x =  tf.reshape(input_data, [batch_size,h,w, features])
            if dims is not None:
                assert dims[0] == False and dims[3] == False
                x = tf.reverse(x, dims)
            x = tf.transpose(x, [1,2,0,3])
            x =  tf.reshape(x, [-1, features])
            x = tf.split(0, h*w, x)     

            sequence_length = tf.ones(shape=(batch_size,), dtype=tf.int32)*shape[0]
            inputs_ta = tf.TensorArray(dtype=tf.float32, size=h*w,name='input_ta')
            inputs_ta = inputs_ta.unpack(x)
            states_ta = tf.TensorArray(dtype=tf.float32, size=h*w+1,name='state_ta',clear_after_read=False)
            outputs_ta = tf.TensorArray(dtype=tf.float32, size=h*w,name='output_ta')

            states_ta = states_ta.write(h*w,  tf.nn.rnn_cell.LSTMStateTuple(tf.zeros([batch_size,rnn_size], tf.float32),
                                                         tf.zeros([batch_size,rnn_size], tf.float32)))
            def getindex1(t,w):
                return tf.cond(tf.less_equal(tf.constant(w),t),
                               lambda:t-tf.constant(w),
                               lambda:tf.constant(h*w))
            def getindex2(t,w):
                return tf.cond(tf.less(tf.constant(0),tf.mod(t,tf.constant(w))),
                               lambda:t-tf.constant(1),
                               lambda:tf.constant(h*w))

            time = tf.constant(0)

            def body(time, outputs_ta, states_ta):
                constant_val = tf.constant(0)
                stateUp = tf.cond(tf.less_equal(tf.constant(w),time),
                                  lambda: states_ta.read(getindex1(time,w)),
                                  lambda: states_ta.read(h*w))
                stateLast = tf.cond(tf.less(constant_val,tf.mod(time,tf.constant(w))),
                                    lambda: states_ta.read(getindex2(time,w)),
                                    lambda: states_ta.read(h*w)) 

                currentState = stateUp[0],stateLast[0],stateUp[1],stateLast[1]
                out , state = cell(inputs_ta.read(time),currentState)  
                outputs_ta = outputs_ta.write(time,out)
                states_ta = states_ta.write(time,state)
                return time + 1, outputs_ta, states_ta

            def condition(time,outputs_ta,states_ta):
                return tf.less(time ,  tf.constant(h*w)) 

            result , outputs_ta, states_ta = tf.while_loop(condition, body, [time,outputs_ta,states_ta]
                                                           ,parallel_iterations=1)


            outputs = outputs_ta.pack()
            states  = states_ta.pack()

            y =  tf.reshape(outputs, [h,w,batch_size,rnn_size])
            y = tf.transpose(y, [2,0,1,3])
            if dims is not None:
                y = tf.reverse(y, dims)

            return y,states