使用Scoop编程DEAP

时间:2017-02-05 11:08:48

标签: python parallel-processing deap

我在python中使用DEAP库来解决多目标优化问题。我想使用多个处理器来完成这项任务;但是,我遇到了一些麻烦。

为了给出一些上下文,我将networkx与DEAP结合使用我还定义了适应度函数,交叉和变异函数(由于某些原因我不会在这里显示)。

它说here我需要做的就是安装Scoop并添加行

from scoop import futures

toolbox.register("map", futures.map)

但是我似乎遇到了错误:

scoop._comm.scoopexceptions.ReferenceBroken: 'module' object has no attribute 'Chromosome'

在做了一些挖掘之后,我发现我需要按照指定的here将调用移动到主模块中的creator.create。

这样做后,我又收到了一个错误:

scoop._comm.scoopexceptions.ReferenceBroken: This element could not be pickled: FutureId(worker='127.0.0.1:49663', rank=1):partial(<Chromosome representation of a solution here>)=None

我并不完全熟悉并行计算,我不太清楚它是什么意思“不能被腌制”。这里可以看到完整的代码,并进行了一些编辑:

def genetic(network, creator, no_sensors, sfpd, lambda1, lambda2, lambda3, k):
    locations = network.graph.nodes()
    #move creator.create calls to the main module
    ########################################
    creator.create("FitnessMax", base.Fitness, weights=(lambda1, -lambda2, lambda3)) 
    creator.create("Chromosome", list, fitness=creator.FitnessMax) 
    ########################################

    toolbox = base.Toolbox()
    toolbox.register("attr_item", random.sample, locations, no_sensors)
    toolbox.register("chromosome", tools.initRepeat, creator.Chromosome, toolbox.attr_item, n=1)
    toolbox.register("population", tools.initRepeat, list, toolbox.chromosome)

    toolbox.register("map", futures.map) #######<-- this line ##############

    def evaluate(chromosome):
        #fitness function defined here

    # Crossover
    def crossover(chromosome1, chromosome2): # Uniform Crossover
        #crossover is defined here

    # Mutation
    def mutation(chromosome):
        #mutation is defined here

    toolbox.register("evaluate", evaluate)
    toolbox.register("mate", crossover)
    toolbox.register("mutate", mutation)
    toolbox.register("select", tools.selNSGA2)

    random.seed(64)
    pop = toolbox.population(n=MU)
    hof = tools.ParetoFront()
    stats = tools.Statistics(lambda ind: ind.fitness.values)
    stats.register("avg", numpy.mean, axis=0)
    stats.register("min", numpy.min, axis=0)
    stats.register("max", numpy.max, axis=0)

    algorithms.eaMuPlusLambda(pop, toolbox, MU, LAMBDA, CXPB, MUTPB, NGEN, stats, halloffame=hof)

    return list(hof)

谢谢,任何见解都会非常有价值。

1 个答案:

答案 0 :(得分:2)

以下是使用joblib和dill的解决方法。

首先:monkeypatch joblib使用dill使其成为泡菜

import dill
from dill import Pickler
import joblib
joblib.parallel.pickle = dill
joblib.pool.dumps = dill.dumps
joblib.pool.Pickler = Pickler

from joblib.pool import CustomizablePicklingQueue
from io import BytesIO
from pickle import HIGHEST_PROTOCOL


class CustomizablePickler(Pickler):
    """Pickler that accepts custom reducers.
    HIGHEST_PROTOCOL is selected by default as this pickler is used
    to pickle ephemeral datastructures for interprocess communication
    hence no backward compatibility is required.
    `reducers` is expected expected to be a dictionary with key/values
    being `(type, callable)` pairs where `callable` is a function that
    give an instance of `type` will return a tuple `(constructor,
    tuple_of_objects)` to rebuild an instance out of the pickled
    `tuple_of_objects` as would return a `__reduce__` method. See the
    standard library documentation on pickling for more details.
    """

    # We override the pure Python pickler as its the only way to be able to
    # customize the dispatch table without side effects in Python 2.6
    # to 3.2. For Python 3.3+ leverage the new dispatch_table
    # feature from http://bugs.python.org/issue14166 that makes it possible
    # to use the C implementation of the Pickler which is faster.

    def __init__(self, writer, reducers=None, protocol=HIGHEST_PROTOCOL):
        Pickler.__init__(self, writer, protocol=protocol)
        if reducers is None:
            reducers = {}
        # Make the dispatch registry an instance level attribute instead of
        # a reference to the class dictionary under Python 2
        self.dispatch = Pickler.dispatch.copy()
        for type, reduce_func in reducers.items():
            self.register(type, reduce_func)

    def register(self, type, reduce_func):
        if hasattr(Pickler, 'dispatch'):
            # Python 2 pickler dispatching is not explicitly customizable.
            # Let us use a closure to workaround this limitation.
            def dispatcher(self, obj):
                reduced = reduce_func(obj)
                self.save_reduce(obj=obj, *reduced)
            self.dispatch[type] = dispatcher
        else:
            self.dispatch_table[type] = reduce_func

joblib.pool.CustomizablePickler = CustomizablePickler


def _make_methods(self):
    self._recv = recv = self._reader.recv
    racquire, rrelease = self._rlock.acquire, self._rlock.release

    def get():
        racquire()
        try:
            return recv()
        finally:
            rrelease()

    self.get = get

    def send(obj):
        buffer = BytesIO()
        CustomizablePickler(buffer, self._reducers).dump(obj)
        self._writer.send_bytes(buffer.getvalue())

    self._send = send

    if self._wlock is None:
        # writes to a message oriented win32 pipe are atomic
        self.put = send
    else:
        wlock_acquire, wlock_release = (
            self._wlock.acquire, self._wlock.release)

        def put(obj):
            wlock_acquire()
            try:
                return send(obj)
            finally:
                wlock_release()

        self.put = put

CustomizablePicklingQueue._make_methods = _make_methods

第二

from joblib import Parallel, delayed

def mymap(f, *iters):
    return Parallel(n_jobs=-1)(delayed(f)(*args) for args in zip(*iters))

最后只需注册地图:

toolbox.register("map", mymap)

它与您链接的示例完美配合。您可以integrate dask和joblib将此解决方案扩展到群集。使用dask-drmaa,你几乎拥有与scoop相同的功能。

可以找到示例代码here