我从未使用过sklearn中存在的增量PCA,我对它的参数感到有点困惑,而且无法找到它们的好解释。
我看到构造函数中有batch_size
,但是,当使用partial_fit
方法时,您可以再次只传递部分数据,我发现了以下方法:
n = df.shape[0]
chunk_size = 100000
iterations = n//chunk_size
ipca = IncrementalPCA(n_components=40, batch_size=1000)
for i in range(0, iterations):
ipca.partial_fit(df[i*chunk_size : (i+1)*chunk_size].values)
ipca.partial_fit(df[iterations*chunk_size : n].values)
现在,我不明白的是 - 当使用部分拟合时,batch_size是否可以扮演任何角色?它们如何相关?
此外,如果两者都被考虑,当我想在增加内存占用时增加精度时,我应该如何正确地改变它们的值(反过来,以降低精度的代价降低内存消耗)?
答案 0 :(得分:2)
docs说:
batch_size:int或None,(默认=无)
The number of samples to use for each batch. Only used when calling fit...
此参数不在partial_fit
中使用,其中批量大小由用户控制。
较大的批次会增加内存消耗,较小的批次会减少内存消耗。 这也写在文档中:
此算法具有恒定的内存复杂性,按批次大小的顺序,允许使用np.memmap文件而无需将整个文件加载到内存中。
尽管有一些检查和参数启发式,整个fit
- 函数看起来像这样:
for batch in gen_batches(n_samples, self.batch_size_):
self.partial_fit(X[batch], check_input=False)
答案 1 :(得分:0)
以下是一些基于https://github.com/kevinhughes27/pyIPCA的增量PCA代码,它是CCIPCA方法的一种实现。
import scipy.sparse as sp
import numpy as np
from scipy import linalg as la
import scipy.sparse as sps
from sklearn import datasets
class CCIPCA:
def __init__(self, n_components, n_features, amnesic=2.0, copy=True):
self.n_components = n_components
self.n_features = n_features
self.copy = copy
self.amnesic = amnesic
self.iteration = 0
self.mean_ = None
self.components_ = None
self.mean_ = np.zeros([self.n_features], np.float)
self.components_ = np.ones((self.n_components,self.n_features)) / \
(self.n_features*self.n_components)
def partial_fit(self, u):
n = float(self.iteration)
V = self.components_
# amnesic learning params
if n <= int(self.amnesic):
w1 = float(n+2-1)/float(n+2)
w2 = float(1)/float(n+2)
else:
w1 = float(n+2-self.amnesic)/float(n+2)
w2 = float(1+self.amnesic)/float(n+2)
# update mean
self.mean_ = w1*self.mean_ + w2*u
# mean center u
u = u - self.mean_
# update components
for j in range(0,self.n_components):
if j > n: pass
elif j == n: V[j,:] = u
else:
# update the components
V[j,:] = w1*V[j,:] + w2*np.dot(u,V[j,:])*u / la.norm(V[j,:])
normedV = V[j,:] / la.norm(V[j,:])
normedV = normedV.reshape((self.n_features, 1))
u = u - np.dot(np.dot(u,normedV),normedV.T)
self.iteration += 1
self.components_ = V / la.norm(V)
return
def post_process(self):
self.explained_variance_ratio_ = np.sqrt(np.sum(self.components_**2,axis=1))
idx = np.argsort(-self.explained_variance_ratio_)
self.explained_variance_ratio_ = self.explained_variance_ratio_[idx]
self.components_ = self.components_[idx,:]
self.explained_variance_ratio_ = (self.explained_variance_ratio_ / \
self.explained_variance_ratio_.sum())
for r in range(0,self.components_.shape[0]):
d = np.sqrt(np.dot(self.components_[r,:],self.components_[r,:]))
self.components_[r,:] /= d
您可以使用
进行测试将pandas导入为pd,ccipca
df = pd.read_csv('iris.csv')
df = np.array(df)[:,:4].astype(float)
pca = ccipca.CCIPCA(n_components=2,n_features=4)
S = 10
print df[0, :]
for i in range(150): pca.partial_fit(df[i, :])
pca.post_process()
得到的特征向量/值不会与批量PCA完全相同。结果是近似值,但它们很有用。