我正在测试Google Cloud ML,以便使用Tensorflow加速我的ML模型。
不幸的是,Google Cloud ML似乎非常慢。我的主流级PC至少比Google Cloud ML快10倍。
我怀疑它使用GPU,所以我做了一个测试。我修改了一个示例code以强制使用GPU。
diff --git a/mnist/trainable/trainer/task.py b/mnist/trainable/trainer/task.py
index 9acb349..a64a11d 100644
--- a/mnist/trainable/trainer/task.py
+++ b/mnist/trainable/trainer/task.py
@@ -131,11 +131,12 @@ def run_training():
images_placeholder, labels_placeholder = placeholder_inputs(
FLAGS.batch_size)
- # Build a Graph that computes predictions from the inference model.
- logits = mnist.inference(images_placeholder, FLAGS.hidden1, FLAGS.hidden2)
+ with tf.device("/gpu:0"):
+ # Build a Graph that computes predictions from the inference model.
+ logits = mnist.inference(images_placeholder, FLAGS.hidden1, FLAGS.hidden2)
- # Add to the Graph the Ops for loss calculation.
- loss = mnist.loss(logits, labels_placeholder)
+ # Add to the Graph the Ops for loss calculation.
+ loss = mnist.loss(logits, labels_placeholder)
# Add to the Graph the Ops that calculate and apply gradients.
train_op = mnist.training(loss, FLAGS.learning_rate)
此培训代码适用于我的PC(gcloud beta ml local train ...
),但不适用于云端。它会出现这样的错误:
"Traceback (most recent call last):
File "/usr/lib/python2.7/runpy.py", line 162, in _run_module_as_main
"__main__", fname, loader, pkg_name)
File "/usr/lib/python2.7/runpy.py", line 72, in _run_code
exec code in run_globals
File "/root/.local/lib/python2.7/site-packages/trainer/task.py", line 239, in <module>
tf.app.run()
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/platform/app.py", line 43, in run
sys.exit(main(sys.argv[:1] + flags_passthrough))
File "/root/.local/lib/python2.7/site-packages/trainer/task.py", line 235, in main
run_training()
File "/root/.local/lib/python2.7/site-packages/trainer/task.py", line 177, in run_training
sess.run(init)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 766, in run
run_metadata_ptr)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 964, in _run
feed_dict_string, options, run_metadata)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 1014, in _do_run
target_list, options, run_metadata)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 1034, in _do_call
raise type(e)(node_def, op, message)
InvalidArgumentError: Cannot assign a device to node 'softmax_linear/biases': Could not satisfy explicit device specification '/device:GPU:0' because no devices matching that specification are registered in this process; available devices: /job:localhost/replica:0/task:0/cpu:0
Colocation Debug Info:
Colocation group had the following types and devices:
ApplyGradientDescent: CPU
Identity: CPU
Assign: CPU
Variable: CPU
[[Node: softmax_linear/biases = Variable[container="", dtype=DT_FLOAT, shape=[10], shared_name="", _device="/device:GPU:0"]()]]
Google Cloud ML是否支持GPU?