我使用从网络教程中获得的知识和我自己的直觉,在keras中编写了sequence to sequence学习LSTM。我将示例文本转换为序列,然后使用keras中的pad_sequence
函数进行填充。
from keras.preprocessing.text import Tokenizer,base_filter
from keras.preprocessing.sequence import pad_sequences
def shift(seq, n):
n = n % len(seq)
return seq[n:] + seq[:n]
txt="abcdefghijklmn"*100
tk = Tokenizer(nb_words=2000, filters=base_filter(), lower=True, split=" ")
tk.fit_on_texts(txt)
x = tk.texts_to_sequences(txt)
#shifing to left
y = shift(x,1)
#padding sequence
max_len = 100
max_features=len(tk.word_counts)
X = pad_sequences(x, maxlen=max_len)
Y = pad_sequences(y, maxlen=max_len)
仔细检查后,我发现我的填充序列看起来像这样
>>> X[0:6]
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7]], dtype=int32)
>>> X
array([[ 0, 0, 0, ..., 0, 0, 1],
[ 0, 0, 0, ..., 0, 0, 3],
[ 0, 0, 0, ..., 0, 0, 2],
...,
[ 0, 0, 0, ..., 0, 0, 13],
[ 0, 0, 0, ..., 0, 0, 12],
[ 0, 0, 0, ..., 0, 0, 14]], dtype=int32)
填充序列是否看起来像这样?除了数组中的最后一列,其余的都是零。我认为在填充文本时我犯了一些错误,如果是这样,你能告诉我我在哪里犯了错误吗?
答案 0 :(得分:8)
如果你想用char进行标记,你可以手动进行,这不是太复杂:
首先为你的角色建立一个词汇表:
txt="abcdefghijklmn"*100
vocab_char = {k: (v+1) for k, v in zip(set(txt), range(len(set(txt))))}
vocab_char['<PAD>'] = 0
这将为您的txt中的每个字符关联一个不同的数字。应为padding保留索引为0的字符。
使用反向词汇表可以解码输出。
rvocab = {v: k for k, v in vocab.items()}
一旦你有了这个,你可以先将文本拆分成序列,比如你想要有长度为seq_len = 13
的序列:
[[vocab_char[char] for char in txt[i:(i+seq_len)]] for i in range(0,len(txt),seq_len)]
您的输出将如下所示:
[[9, 12, 6, 10, 8, 7, 2, 1, 5, 13, 11, 4, 3],
[14, 9, 12, 6, 10, 8, 7, 2, 1, 5, 13, 11, 4],
...,
[2, 1, 5, 13, 11, 4, 3, 14, 9, 12, 6, 10, 8],
[7, 2, 1, 5, 13, 11, 4, 3, 14]]
请注意,最后一个序列的长度不同,您可以将其丢弃或将序列填充到max_len = 13,它会为它添加0。
您可以通过将所有内容移动1来以相同的方式构建目标Y: - )
我希望这会有所帮助。
答案 1 :(得分:3)
问题出在这一行:
tk = Tokenizer(nb_words=2000, filters=base_filter(), lower=True, split=" ")
当您设置此类分割(按" "
)时,由于数据的性质,您将获得由单个单词组成的每个序列。这就是你的填充序列只有一个非零元素的原因。要改变尝试:
txt="a b c d e f g h i j k l m n "*100
答案 2 :(得分:0)
参数padding
控制每个序列之前或之后的填充。像这样使用:
X = pad_sequences(x, maxlen=max_len, padding='post')
Y = pad_sequences(y, maxlen=max_len, padding='post')