9个方程的非线性系统9未知数MATLAB - 以多项式比率耦合的未知数

时间:2017-01-30 19:03:00

标签: algorithm matlab equation-solving nonlinear-optimization

目标

我想解决一个带有9个未知数的9个非线性方程组,并用Matlab求解。

所有9个未知数都作为多项式的比率耦合(参见myfun lower)

Fsolve

x02=[5000,5000,5000,0.4,0.4,0.4,0.4,0.4,0.4];
ctrl2=[9894+1i*0.118,9894+1i*0.118,9894+1i*0.118,0.5,0.5,0.5,0.5,0.5,0.5];
f2 = @(x) myfun(x,Peff);

options2 = optimoptions('fsolve','Algorithm','trust-region-dogleg','Display','iter-detailed'...
    ,'MaxFunEvals', 100000, 'MaxIter', 100000,'TolX',1e-12,'TolFun',1e-12,...
    'Jacobian','on');
[x2,F2,exitflag2,output2] = fsolve(f2,x02,options2);

函数myfun,返回方程式系统以输入fsolve对应的雅可比行列式

    function [F,J] = myfun( x, p)
  

% System of equation

F(1) = -(x(1) - x(1)*x(8)*x(9))/(x(4)*x(5) + x(6)*x(7) + x(8)*x(9) + x(4)*x(8)*x(7) + x(6)*x(5)*x(9) - 1) - p(1,1);
F(2) = -(x(2)*x(4) + x(2)*x(6)*x(9))/(x(4)*x(5) + x(6)*x(7) + x(8)*x(9) + x(4)*x(8)*x(7) + x(6)*x(5)*x(9) - 1) - p(1,2);
F(3) = -(x(3)*x(6) + x(3)*x(4)*x(8))/(x(4)*x(5) + x(6)*x(7) + x(8)*x(9) + x(4)*x(8)*x(7) + x(6)*x(5)*x(9) - 1) - p(1,3);
F(4) = -(x(1)*x(5) + x(1)*x(8)*x(7))/(x(4)*x(5) + x(6)*x(7) + x(8)*x(9) + x(4)*x(8)*x(7) + x(6)*x(5)*x(9) - 1) - p(2,1);
F(5) = -(x(2) - x(2)*x(6)*x(7))/(x(4)*x(5) + x(6)*x(7) + x(8)*x(9) + x(4)*x(8)*x(7) + x(6)*x(5)*x(9) - 1) - p(2,2);
F(6) = -(x(3)*x(8) + x(3)*x(6)*x(5))/(x(4)*x(5) + x(6)*x(7) + x(8)*x(9) + x(4)*x(8)*x(7) + x(6)*x(5)*x(9) - 1) - p(2,3);
F(7) = -(x(1)*x(7) + x(1)*x(5)*x(9))/(x(4)*x(5) + x(6)*x(7) + x(8)*x(9) + x(4)*x(8)*x(7) + x(6)*x(5)*x(9) - 1) - p(3,1);
F(8) = -(x(2)*x(9) + x(2)*x(4)*x(7))/(x(4)*x(5) + x(6)*x(7) + x(8)*x(9) + x(4)*x(8)*x(7) + x(6)*x(5)*x(9) - 1) - p(3,2);
F(9) = -(x(3) - x(3)*x(4)*x(5))/(x(4)*x(5) + x(6)*x(7) + x(8)*x(9) + x(4)*x(8)*x(7) + x(6)*x(5)*x(9) - 1) - p(3,3);
  

%% Jacobian

I compute the Jacobian myself but will spare you the detail, as it is considerably long

end

结果

                                         Norm of      First-order   Trust-region
 Iteration  Func-count     f(x)          step         optimality    radius
     0          1     2.45042e+19                      1.39e+14               1
     1          2     2.45042e+19              1       1.39e+14               1
     2          3     2.45031e+19           0.25       4.77e+15            0.25
     3          4     2.45031e+19          0.625       4.77e+15           0.625
     4          5     2.45031e+19        0.15625       4.77e+15           0.156
     5          6     2.44992e+19      0.0390625        6.8e+16          0.0391
     6          7     2.44992e+19      0.0976562        6.8e+16          0.0977
     7          8     2.44992e+19      0.0244141        6.8e+16          0.0244
     8          9      2.4495e+19     0.00610352       2.03e+17          0.0061
     9         10      2.4495e+19      0.0152588       2.03e+17          0.0153
    10         11      2.4486e+19      0.0038147       7.67e+17         0.00381
    11         12      2.4486e+19     0.00953674       7.67e+17         0.00954
    12         13     2.44592e+19     0.00238419       4.62e+18         0.00238
    13         14     2.44592e+19     0.00596046       4.62e+18         0.00596
    14         15     2.40048e+19     0.00149012       5.62e+20         0.00149
    15         16     2.40048e+19     0.00372529       5.62e+20         0.00373
    16         17     2.40048e+19    0.000931323       5.62e+20        0.000931
    17         18     2.40048e+19    0.000232831       5.62e+20        0.000233
    18         19     2.36832e+19    5.82077e-05       1.52e+21        5.82e-05
    19         20     2.36832e+19    0.000145519       1.52e+21        0.000146
    20         21      2.3131e+19    3.63798e-05       4.24e+21        3.64e-05
    21         22      2.3131e+19    9.09495e-05       4.24e+21        9.09e-05
    22         23     2.21355e+19    2.27374e-05       1.26e+22        2.27e-05
    23         24     2.21355e+19    5.68434e-05       1.26e+22        5.68e-05
    24         25     2.01772e+19    1.42109e-05        4.2e+22        1.42e-05
    25         26     2.01772e+19    3.55271e-05        4.2e+22        3.55e-05
    26         27      1.5592e+19    8.88178e-06       1.76e+23        8.88e-06
    27         28      1.5592e+19    2.22045e-05       1.76e+23        2.22e-05
    28         29     1.17854e+18    5.55112e-06       7.24e+23        5.55e-06
    29         30     3.43734e+16    1.38778e-05        1.9e+23        1.39e-05
    30         31     1.23843e+15    3.46945e-05       4.04e+22        3.47e-05
    31         32     1.23843e+15    8.67362e-05       4.04e+22        8.67e-05
    32         33     7.49991e+13     2.1684e-05       4.25e+21        2.17e-05
    33         34     7.49991e+13    5.42101e-05       4.25e+21        5.42e-05
    34         35     3.19073e+13    1.35525e-05       3.46e+21        1.36e-05
    35         36     3.19073e+13    3.38813e-05       3.46e+21        3.39e-05
    36         37     3.19073e+13    8.47033e-06       3.46e+21        8.47e-06
    37         38     3.19073e+13    2.11758e-06       3.46e+21        2.12e-06
    38         39     3.19073e+13    5.29396e-07       3.46e+21        5.29e-07
    39         40     3.19073e+13    1.32349e-07       3.46e+21        1.32e-07
    40         41     3.19073e+13    3.30872e-08       3.46e+21        3.31e-08
    41         42     3.19073e+13    8.27181e-09       3.46e+21        8.27e-09
    42         43     3.19073e+13    2.06795e-09       3.46e+21        2.07e-09
    43         44     3.19073e+13    5.16988e-10       3.46e+21        5.17e-10
    44         45     3.16764e+13    1.29247e-10          3e+21        1.29e-10
    45         46     3.16764e+13    1.29247e-10          3e+21        1.29e-10
    46         47     3.16764e+13    3.23117e-11          3e+21        3.23e-11
    47         48     3.16764e+13    8.07794e-12          3e+21        8.08e-12
    48         49     3.16764e+13    2.01948e-12          3e+21        2.02e-12
    49         50     3.16764e+13    5.04871e-13          3e+21        5.05e-13
    50         51     3.16764e+13    1.26218e-13          3e+21        1.26e-13
    51         52     3.16764e+13    3.15544e-14          3e+21        3.16e-14
    52         53     3.16764e+13    7.88861e-15          3e+21        7.89e-15
    53         54     3.16764e+13    1.97215e-15          3e+21        1.97e-15
    54         55     3.16764e+13    4.93038e-16          3e+21        4.93e-16

fsolve stopped because the relative norm of the current step, 1.097484e-16, is less than
max(options.TolX^2,eps) = 2.220446e-16. However, the sum of squared function values,
r = 3.167644e+13, exceeds sqrt(options.TolFun) = 1.000000e-06.

Optimization Metric                                               Options
relative norm(step) =   1.10e-16                max(TolX^2,eps) =   2e-16 (selected)
r =   3.17e+13                                    sqrt(TolFun) =  1.0e-06 (selected)


exitflag2 =

    -2


output2 = 

       iterations: 54
        funcCount: 55
        algorithm: 'trust-region-dogleg'
    firstorderopt: 3.000805388686251e+21
          message: 'No solution found.…'

问题

  

初步猜测

x02 =

   1.0e+03 *

  Columns 1 through 5

   5.000000000000000   5.000000000000000   5.000000000000000   0.000400000000000   0.000400000000000

  Columns 6 through 9

   0.000400000000000   0.000400000000000   0.000400000000000   0.000400000000000
  

fsolve给出的解决方案

x2 =

   1.0e+03 *

  Columns 1 through 2

  5.000098340971978 - 0.000000066639557i  5.000100855522207 + 0.000000027141142i

  Columns 3 through 4

  5.000100887684736 + 0.000000021333305i  0.000500827051867 + 0.000000033172152i

  Columns 5 through 6

  0.000498312570833 - 0.000000060511167i  0.000500859436647 + 0.000000027409553i

  Columns 7 through 8

  0.000500831092720 + 0.000000033506374i  0.000500831171443 + 0.000000033543065i

  Column 9

  0.000498337065684 - 0.000000066909835i
  

解决方案应该是什么(控制)

    ctrl2 =

   1.0e+03 *

  Columns 1 through 2

  9.894000000000000 + 0.355900000000000i  9.894000000000000 + 0.355900000000000i

  Columns 3 through 4

  9.894000000000000 + 0.355900000000000i  0.000499999000000 + 0.000000000000000i

  Columns 5 through 6

  0.000499999000000 + 0.000000000000000i  0.000499999000000 + 0.000000000000000i

  Columns 7 through 8

  0.000499999000000 + 0.000000000000000i  0.000499999000000 + 0.000000000000000i

  Column 9

  0.000499999000000 + 0.000000000000000i

评论

正如你所看到的那样,在没有离初始猜测很远的情况下,解决崩溃的速度相当快。

我尝试更改TolX TolFun算法但仍然崩溃(根据Matlab网站的建议,在算法失败时该怎么做)

该算法在fsolve和lsqnonlin(levnberg,trust-region-dogleg,trust-region-reflective)中的其他算法崩溃类似

问题:

  

你能帮我弄清楚我需要做些什么来建立一个   将收敛到控制值的算法?

谢谢

1 个答案:

答案 0 :(得分:0)

您遇到的问题实际上解算器没有任何问题。更有可能的是,你只需要在问题中使用许多局部最小化器,并且优化算法就会陷入困境。你真的没什么可做的......几乎所有你手上的优化求解器都是基于梯度下降的原理(或多或少),所以它们会引导你去一个最小化器,但不一定是全球性的。有些人做的是生成一大组随机初始条件,并为每个初始条件运行优化求解器。这并不能保证您获得的解决方案之一是全局最小化器,但至少您应该能够比单个初始猜测做得更好。

如果你真的需要找到全局最小化器,那么你需要使用某种类型的“Groebner-based”解决方法。这些类型的求解器基于“消除理论”,并将产生包含所有全局最小化器的单变量多项式。然而,这些解算器通常是符号的,极其耗费内存,并且基本上不能保证在有限的时间内完成。我怀疑(我真的不知道)这些问题是NP难的。根据我的经验,像你展示的那个看似很小的问题可能需要很长时间才能解决(如果有的话)。