我有一个函数接受一个节点的邻居,对于我使用广播变量的邻居和节点本身的id,它计算该节点的紧密度中心性。我用图的结果映射图的每个节点那个函数。当我打开任务管理器时,cpu根本没有被利用,好像它不是并行工作,内存也是如此,但是每个节点并行执行该功能,而且数据也很大,需要时间完成,它不喜欢它不需要资源。非常感谢,非常感谢,谢谢。
要加载图表,请使用val graph = GraphLoader.edgeListFile(sc, path).cache
object ClosenessCentrality {
case class Vertex(id: VertexId)
def run(graph: Graph[Int, Float],sc: SparkContext): Unit = {
//Have to reverse edges and make graph undirected because is bipartite
val neighbors = CollectNeighbors.collectWeightedNeighbors(graph).collectAsMap()
val bNeighbors = sc.broadcast(neighbors)
val result = graph.vertices.map(f => shortestPaths(f._1,bNeighbors.value))
//result.coalesce(1)
result.count()
}
def shortestPaths(source: VertexId, neighbors: Map[VertexId, Map[VertexId, Float]]): Double ={
val predecessors = new mutable.HashMap[VertexId, ListBuffer[VertexId]]()
val distances = new mutable.HashMap[VertexId, Double]()
val q = new FibonacciHeap[Vertex]
val nodes = new mutable.HashMap[VertexId, FibonacciHeap.Node[Vertex]]()
distances.put(source, 0)
for (w <- neighbors) {
if (w._1 != source)
distances.put(w._1, Int.MaxValue)
predecessors.put(w._1, ListBuffer[VertexId]())
val node = q.insert(Vertex(w._1), distances(w._1))
nodes.put(w._1, node)
}
while (!q.isEmpty) {
val u = q.minNode
val node = u.data.id
q.removeMin()
//discover paths
//println("Current node is:"+node+" "+neighbors(node).size)
for (w <- neighbors(node).keys) {
//print("Neighbor is"+w)
val alt = distances(node) + neighbors(node)(w)
// if (distances(w) > alt) {
// distances(w) = alt
// q.decreaseKey(nodes(w), alt)
// }
// if (distances(w) == alt)
// predecessors(w).+=(node)
if(alt< distances(w)){
distances(w) = alt
predecessors(w).+=(node)
q.decreaseKey(nodes(w), alt)
}
}//For
}
val sum = distances.values.sum
sum
}
答案 0 :(得分:1)
为了对原始问题提供某些答案,我怀疑您的RDD只有一个分区,因此使用单个核心进行处理。
SELECT cname,
COUNT(cname) AS games,
SUM(CASE points WHEN 3 THEN 1 ELSE 0 END) AS wins,
SUM(CASE points WHEN 1 THEN 1 ELSE 0 END) AS draws,
SUM(CASE points WHEN 0 THEN 1 ELSE 0 END) AS loses,
SUM(goalsscored)-SUM(goalsconceded) AS goaldiff
FROM pmatch
GROUP BY cname
ORDER BY 3 DESC, 6 DESC;
方法有一个参数来指定所需的最小分区数。
此外,您可以使用edgeListFile
来获取更多分区。
您提到了repartition
,但默认情况下只会减少分区数量,请参阅此问题:Spark Coalesce More Partitions