我在pymc3的分层模型中对NUTS采样有问题。我在pymc3中做了一些简单的模型,没有任何问题,但是这个任务我无法移动。有人能帮帮我吗?
可以从这里获取数据:cars2004.csv。首先应该完成一些数据集工作:
import numpy as np
import pandas as pd
import pymc3 as pm
import theano.tensor as T
data = pd.read_csv("cars2004.csv", sep=",", index_col= 0)
interest = ["price.retail", "cons.city", "cons.highway", "engine.size",
"horsepower","weight", "wheel.base", "length", "width", "ncylinder"]
df1 = data[data.ncylinder != -1]
df1 = df1[df1.fhybrid != "Yes"]
df = df1[interest].copy()
n, p = len(df), 9
df["price.retail"] = df["price.retail"].apply(lambda x: x/1000)
python中的模型:
with pm.Model() as model:
lambd = pm.Gamma("lambd", alpha=1, beta=.005)
beta0 = pm.Normal("beta0", mu = 80, sd = 100)
beta = pm.MvNormal("beta", mu = np.zeros(p), tau = lambd*np.eye(p), shape = p)
mu = pm.MvNormal("mu", mu = np.array([10,10,3,200,1500,250,500,10,5]),
cov = np.diag([100,100,100,1000**2,1000**2,100**2,100**2,100**2,100]),
shape=p)
sigmainvert = pm.WishartBartlett("sigmainvert", nu=p,S=.001*np.eye(p),
testval=.001*np.eye(p))
tau = pm.Gamma("tau", 1, .005)
#sigma = pm.Uniform("sigma", .1, 100)
X = pm.MvNormal("X", mu = mu, tau = sigmainvert, shape = (n,p),
observed = df[interest[1:]])
Y = pm.Normal("Y", mu = beta0 + T.dot(X, beta), tau = tau,
observed = df["price.retail"])
dev = pm.Deterministic("dev",-2*Y.logpt)
先前分布中的值是从赋值中获得的。 “X”有一些缺失数据,“sigmainvert”应该是Wishart(9,diag(0.001,...,0.001)。
ADVI用于NUTS步骤和起始值的应用(首先我在NaN elbo和NaN值方面存在一些问题,现在elbo = -inf)。取样:
with model:
means, sds, elbo = pm.variational.advi(n=50000, learning_rate=0.1)
step = pm.NUTS(scaling = model.dict_to_array(sds)**2, is_cov=True)
trace = pm.sample(1000, step, start = means)
plot1 = pm.traceplot(trace, varnames=["beta0","beta","tau","mu","dev"],alpha=1)
跟踪的结果图:traceplot。如您所见,没有完成MCMC推断,跟踪作为起始值是常量。使用Metropolis步骤对相同模型进行采样可使“mu”轨迹保持不变,其他方式也可以。问题在哪里?