如何使用分类的单热标签进行Keras培训?

时间:2017-01-26 00:03:22

标签: python machine-learning keras one-hot-encoding

我的输入看起来像这样:

[
[1, 2, 3]
[4, 5, 6]
[7, 8, 9]
...]
形状为(1, num_samples, num_features)

,以及如下所示的标签:

[
[0, 1]
[1, 0]
[1, 0]
...]

形状(1, num_samples, 2)

但是,当我尝试运行以下Keras代码时,出现此错误: ValueError: Error when checking model target: expected dense_1 to have 2 dimensions, but got array with shape (1, 8038, 2)。从我读过的内容来看,这似乎源于我的标签是2D,而不仅仅是整数。这是否正确,如果是这样,如何使用Keras的单热标签?

以下是代码:

num_features = 463
trX = np.random(8038, num_features)
trY = # one-hot array of shape (8038, 2) as described above

def keras_builder():  #generator to build the inputs
    while(1):
        x = np.reshape(trX, (1,) + np.shape(trX))
        y = np.reshape(trY, (1,) + np.shape(trY))
        print(np.shape(x)) # (1, 8038, 463)
        print(np.shape(y)) # (1, 8038, 2)
        yield x, y

model = Sequential()
model.add(LSTM(100, input_dim = num_features))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit_generator(keras_builder(), samples_per_epoch = 1, nb_epoch=3, verbose = 2, nb_worker = 1)

迅速抛出上述错误:

Traceback (most recent call last):
  File "file.py", line 35, in <module>
    model.fit_generator(keras_builder(), samples_per_epoch = 1, nb_epoch=3, verbose = 2, nb_worker = 1)
  ...
ValueError: Error when checking model target: expected dense_1 to have 2 dimensions, but got array with shape (1, 8038, 2)

谢谢!

1 个答案:

答案 0 :(得分:6)

有很多事情没有加起来。

我假设您正在尝试解决顺序分类任务,即您的数据形状为(<batch size>, <sequence length>, <feature length>)

在批处理生成器中,您创建一个批处理,其中包含一个长度为8038的序列和每个序列元素的463个要素。您创建一个匹配的Y批次进行比较,由一个包含8038个元素的序列组成,每个元素大小为2.

您的问题是Y与最后一层的输出不匹配。您的Y是三维的,而模型的输出只是二维的:Y.shape = (1, 8038, 2)dense_1.shape = (1,1)不匹配。这解释了您收到的错误消息。

解决方案:您需要在LSTM图层中启用return_sequences=True以返回序列而不是仅返回最后一个元素(有效地删除时间维度)。这将在LSTM层提供(1, 8038, 100)的输出形状。由于Dense层无法处理顺序数据,因此需要将其单独应用于每个序列元素,这是通过将其包装在TimeDistributed包装器中完成的。然后,这会为您的模型提供输出形状(1, 8038, 1)

您的模型应如下所示:

from keras.layers.wrappers import TimeDistributed

model = Sequential()
model.add(LSTM(100, input_dim=num_features, return_sequences=True))
model.add(TimeDistributed(Dense(1, activation='sigmoid')))

在检查模型摘要时可以很容易地发现这一点:

print(model.summary())