我尝试计算不同深度的决策树的测试和训练错误。
train_error = []
test_error = []
for i in range (3,21):
X_train, X_test, y_train, y_test = train_test_split(womendata, womeny, test_size=0.4, random_state=1 )
decitiontree = tree.DecisionTreeClassifier(criterion='gini', splitter='best', max_depth=i, class_weight = 'balanced', min_samples_split=i)
clf = decitiontree.fit(X_train, y_train)
train_error.append( 1 - clf.score(X_train, y_train) )
test_error.append( 1 - clf.score(X_test, y_test) )
在python 3中我收到错误:
Traceback (most recent call last):
File "<stdin>", line 4, in <module>
File "/usr/local/lib/python3.4/dist-packages/sklearn/tree/tree.py", line 154, in fit
X = check_array(X, dtype=DTYPE, accept_sparse="csc")
File "/usr/local/lib/python3.4/dist-packages/sklearn/utils/validation.py", line 398, in check_array
_assert_all_finite(array)
File "/usr/local/lib/python3.4/dist-packages/sklearn/utils/validation.py", line 54, in _assert_all_finite
" or a value too large for %r." % X.dtype)
ValueError: Input contains NaN, infinity or a value too large for dtype('float32').
womendata en women y的长度相同,并且集合中没有丢失的数据。
答案 0 :(得分:0)
从您提供包含无效值的数据数组的错误。
ValueError:输入包含 NaN,无穷大或值太大 D型( 'FLOAT32')。
请检查您的数据是否有效意义:
您可以使用以下代码:
import numpy as np
info = np.finfo(np.float64)
for x in [womendata, womeny]:
assert np.all(x <= info.max) and np.all(x >= info.min), 'not all values in range'
assert np.all(x != np.inf) and np.all(x != -np.inf), 'data contains infinity value'
assert np.all(x is not np.nan), 'data contains Nan value'