R是否错误地计算了具有低细胞计数的2x2表的卡方统计量?

时间:2017-01-21 14:53:34

标签: r chi-squared

我刚注意到,对于2 x 2表,其中单元格具有低频率,即使使用Yates校正,R似乎也错误地计算了chi ^ 2统计数据。

mat <- matrix(c(3, 2, 14, 10), ncol = 2)
chi <- stats::chisq.test(mat)
## Warning message:
## In stats::chisq.test(mat) : Chi-squared approximation may be incorrect

# from the function
chi$statistic
##    X-squared 
## 1.626059e-31 

# as it should be (with Yates correction)
sum((abs(chi$observed - chi$expected) - 0.5)^2 / chi$expected)
## [1] 0.1851001

我是否正确地认为R计算错误,而第二种方法产生.185更准确?或者小细胞计数是否意味着所有赌注都已关闭?

更新

如果没有Yates连续性校正,它似乎工作正常:

chi <- stats::chisq.test(mat, correct = FALSE)
## Warning message:
## In stats::chisq.test(mat, correct = FALSE) :
##   Chi-squared approximation may be incorrect

chi$statistic
##   X-squared 
## 0.004738562 

sum((abs(chi$observed - chi$expected))^2 / chi$expected)
## [1] 0.004738562

1 个答案:

答案 0 :(得分:4)

帮助文件/手册页说明

one half is subtracted from all |O - E| differences; however,
the correction will not be bigger than the differences themselves.

你的例子中的差异都小于0.5:

> chi$observed - chi$expected
            [,1]        [,2]
[1,]  0.06896552 -0.06896552
[2,] -0.06896552  0.06896552

所以,至少,它似乎是记录在案的行为。

附注:如果有疑问,您显然可以使用模拟找到的p值

> chi <- stats::chisq.test(mat, simulate.p.value=TRUE, B=1e6)
> chi

    Pearson's Chi-squared test with simulated p-value (based on 1e+06 replicates)

data:  mat
X-squared = 0.0047386, df = NA, p-value = 1

在这种情况下,在中间某处找到一个卡方并消除警告。或者使用fisher.test ...