您好我希望将训练/测试分割与交叉验证相结合,并在auc中获得结果。
我的第一个方法是我得到它但准确无误。
# split data into train+validation set and test set
X_trainval, X_test, y_trainval, y_test = train_test_split(dataset.data, dataset.target)
# split train+validation set into training and validation sets
X_train, X_valid, y_train, y_valid = train_test_split(X_trainval, y_trainval)
# train on classifier
clf.fit(X_train, y_train)
# evaluate the classifier on the test set
score = svm.score(X_valid, y_valid)
# combined training & validation set and evaluate it on the test set
clf.fit(X_trainval, y_trainval)
test_score = svm.score(X_test, y_test)
我没有找到如何申请roc_auc,请帮忙。
答案 0 :(得分:0)
使用scikit-learn,您可以:
import numpy as np
from sklearn import metrics
y = np.array([1, 1, 2, 2])
scores = np.array([0.1, 0.4, 0.35, 0.8])
fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=2)
现在我们得到:
print(fpr)
数组([0,0.5,0.5,1。])
print(tpr)
数组([0.5,0.5,1。,1。])
print(thresholds)
阵列([0.8,0.4,0.35,0.1])
答案 1 :(得分:0)
在您的代码中,训练完分类器后,可通过以下方式获得预测:
y_preds = clf.predict(X_test)
然后使用它来计算auc值:
from sklearn.metrics import roc_curve, auc
fpr, tpr, thresholds = roc_curve(y, y_preds, pos_label=1)
auc_roc = auc(fpr, tpr)