我想要求更好的方法来按位和遍历矩阵行中的所有元素。
我有一个数组:
import numpy as np
A = np.array([[1,1,1,4], #shape is (3, 5) - one sample
[4,8,8,16],
[4,4,4,4]],
dtype=np.uint16)
B = np.array([[[1,1,1,4], #shape is (2, 3, 5) - two samples
[4,8,8,16],
[4,4,4,4]],
[[1,1,1,4],
[4,8,8,16],
[4,4,4,4]]]
dtype=np.uint16)
示例和预期输出:
resultA = np.bitwise_and(A, axis=through_rows) # doesn't work
# expected output should be a bitwise and over elements in rows resultA:
array([[0],
[0],
[4]])
resultB = np.bitwise_and(B, axis=through_rows) # doesn't work
# expected output should be a bitwise and over elements in rows
# for every sample resultB:
array([[[0],
[0],
[4]],
[[0],
[0],
[4]]])
但我的输出是:
resultA = np.bitwise_and(A, axis=through_rows) # doesn't work
File "<ipython-input-266-4186ceafed83>", line 13
dtype=np.uint16)
^
SyntaxError: invalid syntax
因为,numpy.bitwise_and(x1,x2 [,out])有两个数组作为输入。我怎样才能获得预期的输出?
答案 0 :(得分:6)
此专用功能为bitwise_and.reduce
:
resultB = np.bitwise_and.reduce(B, axis=2)
不幸的是in numpy prior to v1.12.0 bitwise_and.identity
是1,所以这不起作用。对于那些旧版本,解决方法如下:
resultB = np.bitwise_and.reduceat(B, [0], axis=2)