我正在尝试使用gesvd
中的cuSOLVER
函数,我发现它比MATLAB中的svd
函数慢得多,因为这两种情况都使用double
数组或gpuArray
。
C ++代码[使用cuSolver
] :
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <cuda_runtime.h>
#include <cusolverDn.h>
// Macro for timing kernel runs
#define START_METER {\
cudaEvent_t start, stop;\
float elapsedTime;\
cudaEventCreate(&start);\
cudaEventRecord(start, 0);
#define STOP_METER cudaEventCreate(&stop);\
cudaEventRecord(stop, 0);\
cudaEventSynchronize(stop);\
cudaEventElapsedTime(&elapsedTime, start, stop);\
printf("Elapsed time : %f ms\n", elapsedTime);\
}
void cusolverSVD_Test()
{
const int m = 64;
const int rows = m;
const int cols = m;
/* | 3.5 0.5 0 |
* A = | 0.5 3.5 0 |
* | 0 0 2 |
*
*/
double A[rows*m];
for (int i = 0; i < cols; i++)
{
for (int j = 0; j < rows; j++)
{
A[i*rows + j] = (double)rand() / RAND_MAX;
if (i == j){
A[i*rows + j] += 1;
}
}
}
cusolverDnHandle_t handle;
cusolverDnCreate(&handle);
int lwork;
cusolverDnDgesvd_bufferSize(
handle,
rows,
cols,
&lwork);
double *d_A;
cudaMalloc(&d_A, sizeof(double)*rows*cols);
cudaMemcpy(d_A, A, sizeof(double)*rows*cols, cudaMemcpyHostToDevice);
double *d_S;
cudaMalloc(&d_S, sizeof(double)*rows);
double *d_U;
cudaMalloc(&d_U, sizeof(double)*rows*rows);
double *d_VT;
cudaMalloc(&d_VT, sizeof(double)*rows*rows);
double *d_work;
cudaMalloc(&d_work, sizeof(double)*lwork);
double *d_rwork;
cudaMalloc(&d_rwork, sizeof(double)*(rows - 1));
int *devInfo;
cudaMalloc(&devInfo, sizeof(int));
for (int t = 0; t < 10; t++)
{
signed char jobu = 'A';
signed char jobvt = 'A';
START_METER
cusolverDnDgesvd(
handle,
jobu,
jobvt,
rows,
cols,
d_A,
rows,
d_S,
d_U,
rows,
d_VT,
rows,
d_work,
lwork,
d_rwork,
devInfo);
STOP_METER
}
cudaFree(d_A);
cudaFree(d_rwork);
cudaFree(d_S);
cudaFree(d_U);
cudaFree(d_VT);
cudaFree(d_work);
}
int main()
{
cusolverSVD_Test();
}
输出:
Elapsed time : 63.318016 ms
Elapsed time : 66.745316 ms
Elapsed time : 65.966530 ms
Elapsed time : 65.999939 ms
Elapsed time : 64.821053 ms
Elapsed time : 65.184547 ms
Elapsed time : 65.722916 ms
Elapsed time : 60.618786 ms
Elapsed time : 54.937569 ms
Elapsed time : 53.751263 ms
Press any key to continue . . .
**使用svd
函数的Matlab代码*:
%% SVD on gpu
A = rand(64, 64) + eye(64);
tic
[~, ~, ~] = svd(A);
t = toc;
fprintf('CPU time: %f ms\n', t*1000);
d_A = gpuArray(A);
tic
[~, ~, ~] = svd(d_A);
t = toc;
fprintf('GPU time: %f ms\n', t*1000);
%% Output
% >> CPU time: 0.947754 ms
% >> GPU time: 2.168100 ms
Matlab是否使用了更快的算法?或者我只是犯了一些错误?我真的需要一个很好的SVD实现/算法,我可以在CUDA
中使用。
更新:使用1000 x 1000矩阵时的执行时间
C ++ :
3655 ms (Double Precision)
2970 ms (Single Precision)
Matlab的:
CPU time: 280.641123 ms
GPU time: 646.033498 ms
答案 0 :(得分:2)
已知问题是SVD算法不能很好地并行化。你会发现你需要非常大的数组才能看到双精度的好处。对于GPU的单精度,您可能会获得更好的结果。如果您只请求一个输出,您也会得到更好的结果,因为单独计算奇异值会使用更快的算法。
这也高度依赖于GPU的质量。如果您使用的是GeForce GTX等显卡,那么对于像SVD这样的算法来说,你真的不会看到双精度GPU的好处。
从根本上说,GPU内核的性能远低于现代CPU内核,并且它们以非常广泛的并行性弥补了这一点。 SVD算法过于依赖于串行因子分解迭代。也许你可以通过重新考虑代数来解决你的问题,这样你就不需要每次都计算完整的因子分解。