我已使用scale
来规范化数据。示例数据如下所示
structure(list(pp.pmhouravg = c(106.8181818182, 114.0833333333,
100.8333333333, 105, 102.4166666667, 117.8333333333), cc.cmhouravg = c(91.7272727273,
86.4166666667, 82.75, 84, 59.5833333333, 41.3333333333), ss.sdhouravg = c(49.2727272727,
46.8333333333, 47.5, 48.3333333333, 41, 45.5833333333), nn.ndhouravg = c(41.2727272727,
45.25, 34.0833333333, 27.75, 33.0833333333, 35.3333333333)), .Names = c("pp.pmhouravg",
"cc.cmhouravg", "ss.sdhouravg", "nn.ndhouravg"), row.names = c(NA,
6L), class = "data.frame")
并将其标准化我使用
scale(df, center = T, scale = T)
我得到了以下标准化数据:
pp.pmhouravg cc.cmhouravg ss.sdhouravg nn.ndhouravg
1 -0.1504657 0.8893812 0.9702219 0.8259116
2 0.9290599 0.6183329 0.1404438 1.4645030
3 -1.0397516 0.4311897 0.3672155 -0.3284185
4 -0.4206285 0.4949885 0.6506801 -1.3452993
5 -0.8044848 -0.7512149 -1.8438082 -0.4889786
6 1.4862706 -1.6826775 -0.2847531 -0.1277183
attr(,"scaled:center")
pp.pmhouravg cc.cmhouravg ss.sdhouravg nn.ndhouravg
107.83081 74.30177 46.42045 36.12879
attr(,"scaled:scale")
pp.pmhouravg cc.cmhouravg ss.sdhouravg nn.ndhouravg
6.729949 19.592842 2.939815 6.228196
如何在规范化后将数据转换回来。
答案 0 :(得分:3)
让x
成为您的原始数据(可能是数据框或矩阵),sx
是缩放的数据(必须是矩阵,因为scale
返回矩阵),你可以这样做:
b <- attr(sx, "scaled:scale")
a <- attr(sx, "scaled:center")
rx <- sx * rep(b, each = nrow(sx)) + rep(a, each = nrow(sx))
&#34; de-scaled&#34;数据rx
当然也是一个矩阵,因为sx
是一个矩阵。您只需执行以下操作即可将其设为数据框:
data.frame(rx)
答案 1 :(得分:2)
从概念上来说,我们也可以自己尝试z-score-normalization(这与scale()
具有完全相同的结果)并获得原始矩阵:
# save the mean and sd
mu <- colMeans(df)
sd <- sapply(df, sd)
scaled <- t((t(as.matrix(df)) - mu) / sd) # z-score-normalize
all(scaled == scale(df, center = T, scale = T)) # check the scaled matrix is same as obtained from scale()
#[1] TRUE
orig <- t(t(scaled)*sd + mu) # get the original matrix back
all.equal(as.matrix(df), orig)
#[1] TRUE