你好只是为了熟悉CNN,我已经准备了二进制分类飞机(760图像)或非飞机(750)的代码。
这是我的MATLAB代码
Npos = numel(possitive_regions);
Nneg = numel(negative_regions);
Npos_train = floor(0.25* Npos);
Npos_val = floor(0.25*Npos);
Npos_test = floor(0.50*Npos);
Nneg_train = floor(0.25*Nneg);
Nneg_val = floor(0.25*Nneg);
Nneg_test = floor(0.50*Nneg);
for i=1:Npos
im= imresize (single(possitive_regions{i,:}),[50,50]);
imdb.images.data(:,:,:, i) = im;
imdb.images.labels(i) = 1;
if i <= Npos_train
imdb.images.set(i) = 1;
elseif i <= Npos_train+Npos_val
imdb.images.set(i) = 2;
else
imdb.images.set(i) = 3;
end
end
% for negative samples
for i=1:Nneg
im= imresize (single(negative_regions{i,:}),[50,50]);
imdb.images.data(:,:,:, i+Npos) = im;
imdb.images.labels(i+Npos) = 0;
if i <= Nneg_train
imdb.images.set(Npos+i) = 1;
elseif i <= Nneg_train+Nneg_val
imdb.images.set(Npos+i) = 2;
else
imdb.images.set(Npos+i) = 3;
end
end
imdb.meta.sets = {'train', 'val', 'test'} ;
%% Network
opts.inputSize = [50 50 3] ;
opts.train.batchSize = 50;
opts.train.numEpochs = 10;
opts.train.continue = true;
% opts.train.useGpu = false;
opts.train.learningRate = 0.01;
% opts = vl_argparse(opts, []);
f = 0.01;
f=1/100 ;
net.layers = {} ;
net.layers{end+1} = struct('type', 'conv','weights', {{f*randn(5,5,3,20, 'single'), zeros(1, 20, 'single')}},'stride', 1,'pad', 0);
net.layers{end+1} = struct('type', 'pool','method', 'max', 'pool', [2 2], 'stride', 2, 'pad', 0) ;
net.layers{end+1} = struct('type', 'conv', 'weights', {{f*randn(5,5,20,50, 'single'),zeros(1,50,'single')}}, 'stride', 1, 'pad', 0) ;
net.layers{end+1} = struct('type', 'pool', 'method', 'max', 'pool', [2 2], 'stride', 2, 'pad', 0) ;
net.layers{end+1} = struct('type', 'conv', 'weights', {{f*randn(4,4,50,500, 'single'), zeros(1,500,'single')}}, 'stride', 1, 'pad', 0) ;
net.layers{end+1} = struct('type', 'relu') ;
net.layers{end+1} = struct('type', 'conv', 'weights', {{f*randn(1,1,500,10, 'single'), zeros(1,10,'single')}}, 'stride', 1, 'pad', 0) ;
net.layers{end+1} = struct('type', 'softmaxloss') ;
disp( 'Net is Ok.' );
% [net, info] = trainfn(net, imdb, getBatch(opts), 'expDir', opts.expDir, net.meta.trainOpts, opts.train, 'val', find(imdb.images.set == 3)) ;
[net, info] = cnn_train( net, imdb, @getBatch, opts.train, 'val', find( imdb.images.set == 2 ) ) ;
我从MINST示例中获取的网络部分。我已在MatConvNet示例文件夹中保存此文件和getBatch函数。
当我运行cnn_train
时,我收到此输出和错误。
任何人,请帮我解决这个错误。 此外,我已经搜索了这个错误,我发现我需要检查mex文件,并使用vl_compilenn('verbose',1)进行编译。 编译时我也遇到错误:
使用mex时出错
LINK:致命错误LNK1104:无法打开文件 'C:\ Users \用户z5085693 \下载\ matconvnet-1.0-beta23 \ matconvnet-1.0-beta23 \ MATLAB \ MEX \ vl_nnconv.mexw64'
vl_compilenn中的错误&gt; mex_link(第547行)mex(mopts {:});
vl_compilenn中的错误(第498行)mex_link(opts,objs,mex_dir, flags.mexlink);
答案 0 :(得分:1)
请检查您的网络,因为您的网络有10个输出,但您希望获得2个输出。
答案 1 :(得分:0)
此类消息&#34;尝试执行SCRIPT&#34; name&#34;作为一种功能&#34;通常可以通过运行库的设置来解决。在运行CNN训练函数之前,尝试运行vl_setupnn函数。