我有一组10个图表。 (基于X / Y对)(在此示例中仅为3) 显示一个图表很容易,同一窗口中的所有图表都相同。(见图片)
但我还没有找到我想要的解决方案: 10个图是来自频谱分析仪的数据,显示信号。
我想显示第一张图,删除或删除它,并在同一窗口中显示第二张图。
接下来,第二个图表将被删除,第三个图表将被看到(依此类推)
这就是我的代码:
from matplotlib import pyplot as plt
import numpy as np
datei = ['./2450ATT0.csv','./2450ATT0-1.csv','./2450ATT0-2.csv']
for file in datei:
x = np.genfromtxt(file, usecols =(0), delimiter=';', unpack=True)
y = np.genfromtxt(file, usecols =(1), delimiter=';', unpack=True, dtype=float)
plt.xlim(2435,2465)
plt.ylim(-120,-20)
plt.xlabel('Frequenz')
plt.ylabel('Leistung')
plt.plot(x/1000000,y, label=file)
plt.show()
你知道吗?
我也看过plt.animate。但我还没有找到解决方案。
谢谢。 岸堤
答案 0 :(得分:1)
一个接一个地显示数据对我来说似乎有点不合人道。使用动画也许不是最好的解决方案。如果在检查完第二个数据集之后又想回到第一个数据集怎么办?
因此,我会实施一种允许在光谱之间来回切换的解决方案。
以下沙箱示例基于a solution I have provided to a similar problem with images。它使用一个独立的滑块来遍历页面。虽然第一眼看上去有点复杂,但你并不需要理解PageSlider
类才能使用它。只需查看__main__
部分中的代码。
import matplotlib.widgets
import matplotlib.patches
import mpl_toolkits.axes_grid1
class PageSlider(matplotlib.widgets.Slider):
def __init__(self, ax, label, numpages = 10, valinit=0, valfmt='%1d',
closedmin=True, closedmax=True,
dragging=True, **kwargs):
self.facecolor=kwargs.get('facecolor',"w")
self.activecolor = kwargs.pop('activecolor',"b")
self.fontsize = kwargs.pop('fontsize', 10)
self.numpages = numpages
super(PageSlider, self).__init__(ax, label, 0, numpages,
valinit=valinit, valfmt=valfmt, **kwargs)
self.poly.set_visible(False)
self.vline.set_visible(False)
self.pageRects = []
for i in range(numpages):
facecolor = self.activecolor if i==valinit else self.facecolor
r = matplotlib.patches.Rectangle((float(i)/numpages, 0), 1./numpages, 1,
transform=ax.transAxes, facecolor=facecolor)
ax.add_artist(r)
self.pageRects.append(r)
ax.text(float(i)/numpages+0.5/numpages, 0.5, str(i+1),
ha="center", va="center", transform=ax.transAxes,
fontsize=self.fontsize)
self.valtext.set_visible(False)
divider = mpl_toolkits.axes_grid1.make_axes_locatable(ax)
bax = divider.append_axes("right", size="5%", pad=0.05)
fax = divider.append_axes("right", size="5%", pad=0.05)
self.button_back = matplotlib.widgets.Button(bax, label=ur'$\u25C0$',
color=self.facecolor, hovercolor=self.activecolor)
self.button_forward = matplotlib.widgets.Button(fax, label=ur'$\u25B6$',
color=self.facecolor, hovercolor=self.activecolor)
self.button_back.label.set_fontsize(self.fontsize)
self.button_forward.label.set_fontsize(self.fontsize)
self.button_back.on_clicked(self.backward)
self.button_forward.on_clicked(self.forward)
def _update(self, event):
super(PageSlider, self)._update(event)
i = int(self.val)
if i >=self.valmax:
return
self._colorize(i)
def _colorize(self, i):
for j in range(self.numpages):
self.pageRects[j].set_facecolor(self.facecolor)
self.pageRects[i].set_facecolor(self.activecolor)
def forward(self, event):
current_i = int(self.val)
i = current_i+1
if (i < self.valmin) or (i >= self.valmax):
return
self.set_val(i)
self._colorize(i)
def backward(self, event):
current_i = int(self.val)
i = current_i-1
if (i < self.valmin) or (i >= self.valmax):
return
self.set_val(i)
self._colorize(i)
if __name__ == "__main__":
import numpy as np
from matplotlib import pyplot as plt
num_pages = 10
data = np.random.rand(700, num_pages)
spec = np.linspace(-10,10, 700)
fig, ax = plt.subplots()
fig.subplots_adjust(bottom=0.18)
ax.set_ylim([0.,1.6])
line, = ax.plot(spec,data[:,0], color="b")
ax_slider = fig.add_axes([0.1, 0.05, 0.8, 0.04])
slider = PageSlider(ax_slider, 'Page', num_pages, activecolor="orange")
def update(val):
i = int(slider.val)
line.set_ydata(data[:,i])
slider.on_changed(update)
plt.show()
上面的代码正在运行,并显示了它的外观。在您的具体情况下,您需要稍微改变它。
我试图相应地调整你的代码,但当然我无法保证它的工作原理。此代码必须放在__main__
部分之下,PageSlider必须保持不变。
import numpy as np
from matplotlib import pyplot as plt
dateien = ['./2450ATT0.csv','./2450ATT0-1.csv','./2450ATT0-2.csv']
data_x = []
data_y = []
for datei in dateien: #do not call a variable "file" in python as this is protected
x = np.genfromtxt(datei, usecols =(0), delimiter=';', unpack=True)
x = x/1000000.
y = np.genfromtxt(datei, usecols =(1), delimiter=';', unpack=True, dtype=float)
data_x.append(x)
data_y.append(y)
fig, ax = plt.subplots()
fig.subplots_adjust(bottom=0.18)
ax.set_xlim([2435,2465])
ax.set_xlim([-120,20])
ax.set_xlabel('Frequenz')
ax.set_ylabel('Leistung')
text = ax.text(0.98,0.98, dateien[0], ha="right", va="top")
line, = ax.plot(data_x[0],data_y[0], color="b")
ax_slider = fig.add_axes([0.1, 0.05, 0.8, 0.04])
slider = PageSlider(ax_slider, 'Page', len(dateien), activecolor="orange")
def update(val):
i = int(slider.val)
line.set_data(data_x[i],data_y[i])
text.set_text(dateien[i])
slider.on_changed(update)
plt.show()
对于一个简单的动画,你宁愿使用matplotlib.animation.FuncAnimation
,代码会沿着那些行看起来
import numpy as np
from matplotlib import pyplot as plt
dateien = ['./2450ATT0.csv','./2450ATT0-1.csv','./2450ATT0-2.csv']
data_x = []
data_y = []
for datei in dateien: # do not call a variable "file" in python, this is a protected word
x = np.genfromtxt(datei, usecols =(0), delimiter=';', unpack=True)
x = x/1000000.
y = np.genfromtxt(datei, usecols =(1), delimiter=';', unpack=True, dtype=float)
data_x.append(x)
data_y.append(y)
fig, ax = plt.subplots()
fig.subplots_adjust(bottom=0.18)
ax.set_xlim([2435,2465])
ax.set_xlim([-120,20])
ax.set_xlabel('Frequenz')
ax.set_ylabel('Leistung')
line, = ax.plot(data_x[0],data_y[0], color="b")
def update(i):
line.set_data(data_x[i],data_y[i])
ani = matplotlib.animation.FuncAnimation(fig, update,
frames= len(dateien), interval = 200, blit = False, repeat= True)
plt.show()
答案 1 :(得分:0)
我建议在2D矩阵布局中使用多个子图并为它们设置动画。可以从http://matplotlib.org/examples/pylab_examples/subplots_demo.html和https://www.dataquest.io/blog/images/python_r/python_pairs.png看到示例(没有动画)。
通过这种方式,您的学生可以同时查看所有数据的变化。子图的实现细节在第一个例子中给出。 Furas已经引导您进入情节动画示例。