matplotlib只显示一组10个图表,如幻灯片

时间:2017-01-18 23:10:44

标签: python matplotlib graph

我有一组10个图表。 (基于X / Y对)(在此示例中仅为3)all 10 graphs together 显示一个图表很容易,同一窗口中的所有图表都相同。(见图片)

但我还没有找到我想要的解决方案: 10个图是来自频谱分析仪的数据,显示信号。

我想显示第一张图,删除或删除它,并在同一窗口中显示第二张图。

接下来,第二个图表将被删除,第三个图表将被看到(依此类推)

这就是我的代码:

from matplotlib import pyplot as plt
import numpy as np

datei = ['./2450ATT0.csv','./2450ATT0-1.csv','./2450ATT0-2.csv']

for file in datei:
    x = np.genfromtxt(file, usecols =(0), delimiter=';', unpack=True)
    y = np.genfromtxt(file, usecols =(1), delimiter=';', unpack=True, dtype=float)

    plt.xlim(2435,2465)
    plt.ylim(-120,-20)
    plt.xlabel('Frequenz')
    plt.ylabel('Leistung')
    plt.plot(x/1000000,y, label=file)  
plt.show()
你知道吗? 我也看过plt.animate。但我还没有找到解决方案。

谢谢。 岸堤

2 个答案:

答案 0 :(得分:1)

一个接一个地显示数据对我来说似乎有点不合人道。使用动画也许不是最好的解决方案。如果在检查完第二个数据集之后又想回到第一个数据集怎么办?

因此,我会实施一种允许在光谱之间来回切换的解决方案。

以下沙箱示例基于a solution I have provided to a similar problem with images。它使用一个独立的滑块来遍历页面。虽然第一眼看上去有点复杂,但你并不需要理解PageSlider类才能使用它。只需查看__main__部分中的代码。

import matplotlib.widgets
import matplotlib.patches
import mpl_toolkits.axes_grid1

class PageSlider(matplotlib.widgets.Slider):

    def __init__(self, ax, label, numpages = 10, valinit=0, valfmt='%1d', 
                 closedmin=True, closedmax=True,  
                 dragging=True, **kwargs):

        self.facecolor=kwargs.get('facecolor',"w")
        self.activecolor = kwargs.pop('activecolor',"b")
        self.fontsize = kwargs.pop('fontsize', 10)
        self.numpages = numpages

        super(PageSlider, self).__init__(ax, label, 0, numpages, 
                            valinit=valinit, valfmt=valfmt, **kwargs)

        self.poly.set_visible(False)
        self.vline.set_visible(False)
        self.pageRects = []
        for i in range(numpages):
            facecolor = self.activecolor if i==valinit else self.facecolor
            r  = matplotlib.patches.Rectangle((float(i)/numpages, 0), 1./numpages, 1, 
                                transform=ax.transAxes, facecolor=facecolor)
            ax.add_artist(r)
            self.pageRects.append(r)
            ax.text(float(i)/numpages+0.5/numpages, 0.5, str(i+1),  
                    ha="center", va="center", transform=ax.transAxes,
                    fontsize=self.fontsize)
        self.valtext.set_visible(False)

        divider = mpl_toolkits.axes_grid1.make_axes_locatable(ax)
        bax = divider.append_axes("right", size="5%", pad=0.05)
        fax = divider.append_axes("right", size="5%", pad=0.05)
        self.button_back = matplotlib.widgets.Button(bax, label=ur'$\u25C0$', 
                        color=self.facecolor, hovercolor=self.activecolor)
        self.button_forward = matplotlib.widgets.Button(fax, label=ur'$\u25B6$', 
                        color=self.facecolor, hovercolor=self.activecolor)
        self.button_back.label.set_fontsize(self.fontsize)
        self.button_forward.label.set_fontsize(self.fontsize)
        self.button_back.on_clicked(self.backward)
        self.button_forward.on_clicked(self.forward)

    def _update(self, event):
        super(PageSlider, self)._update(event)
        i = int(self.val)
        if i >=self.valmax:
            return
        self._colorize(i)

    def _colorize(self, i):
        for j in range(self.numpages):
            self.pageRects[j].set_facecolor(self.facecolor)
        self.pageRects[i].set_facecolor(self.activecolor)

    def forward(self, event):
        current_i = int(self.val)
        i = current_i+1
        if (i < self.valmin) or (i >= self.valmax):
            return
        self.set_val(i)
        self._colorize(i)

    def backward(self, event):
        current_i = int(self.val)
        i = current_i-1
        if (i < self.valmin) or (i >= self.valmax):
            return
        self.set_val(i)
        self._colorize(i)


if __name__ == "__main__":
    import numpy as np
    from matplotlib import pyplot as plt


    num_pages = 10
    data = np.random.rand(700, num_pages)
    spec = np.linspace(-10,10, 700)

    fig, ax = plt.subplots()
    fig.subplots_adjust(bottom=0.18)
    ax.set_ylim([0.,1.6])
    line, = ax.plot(spec,data[:,0], color="b")

    ax_slider = fig.add_axes([0.1, 0.05, 0.8, 0.04])
    slider = PageSlider(ax_slider, 'Page', num_pages, activecolor="orange")

    def update(val):
        i = int(slider.val)
        line.set_ydata(data[:,i])

    slider.on_changed(update)

    plt.show()

enter image description here

上面的代码正在运行,并显示了它的外观。在您的具体情况下,您需要稍微改变它。 我试图相应地调整你的代码,但当然我无法保证它的工作原理。此代码必须放在__main__部分之下,PageSlider必须保持不变。

import numpy as np
from matplotlib import pyplot as plt


dateien = ['./2450ATT0.csv','./2450ATT0-1.csv','./2450ATT0-2.csv']
data_x = []
data_y = []
for datei in dateien: #do not call a variable "file" in python as this is protected
    x = np.genfromtxt(datei, usecols =(0), delimiter=';', unpack=True)
    x = x/1000000.
    y = np.genfromtxt(datei, usecols =(1), delimiter=';', unpack=True, dtype=float)
    data_x.append(x)
    data_y.append(y)


fig, ax = plt.subplots()
fig.subplots_adjust(bottom=0.18)
ax.set_xlim([2435,2465])
ax.set_xlim([-120,20])
ax.set_xlabel('Frequenz')
ax.set_ylabel('Leistung')

text = ax.text(0.98,0.98, dateien[0], ha="right", va="top")
line, = ax.plot(data_x[0],data_y[0], color="b")

ax_slider = fig.add_axes([0.1, 0.05, 0.8, 0.04])
slider = PageSlider(ax_slider, 'Page', len(dateien), activecolor="orange")

def update(val):
    i = int(slider.val)
    line.set_data(data_x[i],data_y[i])
    text.set_text(dateien[i])

slider.on_changed(update)

plt.show()


编辑:

对于一个简单的动画,你宁愿使用matplotlib.animation.FuncAnimation,代码会沿着那些行看起来

import numpy as np
from matplotlib import pyplot as plt

dateien = ['./2450ATT0.csv','./2450ATT0-1.csv','./2450ATT0-2.csv']
data_x = []
data_y = []
for datei in dateien: # do not call a variable "file" in python, this is a protected word
    x = np.genfromtxt(datei, usecols =(0), delimiter=';', unpack=True)
    x = x/1000000.
    y = np.genfromtxt(datei, usecols =(1), delimiter=';', unpack=True, dtype=float)
    data_x.append(x)
    data_y.append(y)


fig, ax = plt.subplots()
fig.subplots_adjust(bottom=0.18)
ax.set_xlim([2435,2465])
ax.set_xlim([-120,20])
ax.set_xlabel('Frequenz')
ax.set_ylabel('Leistung')

line, = ax.plot(data_x[0],data_y[0], color="b")

def update(i):
    line.set_data(data_x[i],data_y[i])

ani = matplotlib.animation.FuncAnimation(fig, update, 
            frames= len(dateien), interval = 200, blit = False, repeat= True)

plt.show()

答案 1 :(得分:0)

我建议在2D矩阵布局中使用多个子图并为它们设置动画。可以从http://matplotlib.org/examples/pylab_examples/subplots_demo.htmlhttps://www.dataquest.io/blog/images/python_r/python_pairs.png看到示例(没有动画)。

通过这种方式,您的学生可以同时查看所有数据的变化。子图的实现细节在第一个例子中给出。 Furas已经引导您进入情节动画示例。