我有一个项目,我希望在python脚本中使用Yahoo的OpenNSFW网络,但是原样,脚本只需要一个图像示例,并且需要大约270ms来计算前向传递(有点太慢)。
将它分摊50张图片,我认为会更快,但我不确定我是否可以只使用deployprototxt文档来执行此操作。
我通过更改dim 1 - >更改了deploy.prototxt文档。 10喜欢这样:
name: "ResNet_50_1by2_nsfw"
layer {
name: "data"
type: "Input"
top: "data"
input_param { shape: { dim: 10 dim: 3 dim: 224 dim: 224 } }
}
...
现在我需要一种方法来change it in the Python script it uses代码:
#!/usr/bin/env python
"""
Copyright 2016 Yahoo Inc.
Licensed under the terms of the 2 clause BSD license.
Please see LICENSE file in the project root for terms.
"""
import numpy as np
import os
import sys
import argparse
import glob
import time
from PIL import Image
from StringIO import StringIO
import caffe
def resize_image(data, sz=(256, 256)):
"""
Resize image. Please use this resize logic for best results instead of the
caffe, since it was used to generate training dataset
:param str data:
The image data
:param sz tuple:
The resized image dimensions
:returns bytearray:
A byte array with the resized image
"""
img_data = str(data)
im = Image.open(StringIO(img_data))
if im.mode != "RGB":
im = im.convert('RGB')
imr = im.resize(sz, resample=Image.BILINEAR)
fh_im = StringIO()
imr.save(fh_im, format='JPEG')
fh_im.seek(0)
return bytearray(fh_im.read())
def caffe_preprocess_and_compute(pimg, caffe_transformer=None, caffe_net=None,
output_layers=None):
"""
Run a Caffe network on an input image after preprocessing it to prepare
it for Caffe.
:param PIL.Image pimg:
PIL image to be input into Caffe.
:param caffe.Net caffe_net:
A Caffe network with which to process pimg afrer preprocessing.
:param list output_layers:
A list of the names of the layers from caffe_net whose outputs are to
to be returned. If this is None, the default outputs for the network
are returned.
:return:
Returns the requested outputs from the Caffe net.
"""
if caffe_net is not None:
# Grab the default output names if none were requested specifically.
if output_layers is None:
output_layers = caffe_net.outputs
img_data_rs = resize_image(pimg, sz=(256, 256))
image = caffe.io.load_image(StringIO(img_data_rs))
H, W, _ = image.shape
_, _, h, w = caffe_net.blobs['data'].data.shape
h_off = max((H - h) / 2, 0)
w_off = max((W - w) / 2, 0)
crop = image[h_off:h_off + h, w_off:w_off + w, :]
transformed_image = caffe_transformer.preprocess('data', crop)
transformed_image.shape = (1,) + transformed_image.shape
input_name = caffe_net.inputs[0]
all_outputs = caffe_net.forward_all(blobs=output_layers,
**{input_name: transformed_image})
outputs = all_outputs[output_layers[0]][0].astype(float)
return outputs
else:
return []
def main(argv):
pycaffe_dir = os.path.dirname(__file__)
parser = argparse.ArgumentParser()
# Required arguments: input file.
parser.add_argument(
"input_file",
help="Path to the input image file"
)
# Optional arguments.
parser.add_argument(
"--model_def",
help="Model definition file."
)
parser.add_argument(
"--pretrained_model",
help="Trained model weights file."
)
args = parser.parse_args()
image_data = open(args.input_file).read()
# Pre-load caffe model.
nsfw_net = caffe.Net(args.model_def, # pylint: disable=invalid-name
args.pretrained_model, caffe.TEST)
# Load transformer
# Note that the parameters are hard-coded for best results
caffe_transformer = caffe.io.Transformer({'data': nsfw_net.blobs['data'].data.shape})
caffe_transformer.set_transpose('data', (2, 0, 1)) # move image channels to outermost
caffe_transformer.set_mean('data', np.array([104, 117, 123])) # subtract the dataset-mean value in each channel
caffe_transformer.set_raw_scale('data', 255) # rescale from [0, 1] to [0, 255]
caffe_transformer.set_channel_swap('data', (2, 1, 0)) # swap channels from RGB to BGR
# Classify.
scores = caffe_preprocess_and_compute(image_data, caffe_transformer=caffe_transformer, caffe_net=nsfw_net, output_layers=['prob'])
# Scores is the array containing SFW / NSFW image probabilities
# scores[1] indicates the NSFW probability
print "NSFW score: " , scores[1]
if __name__ == '__main__':
main(sys.argv)
有一种简单的方法吗?
答案 0 :(得分:0)
您可以在caffe提供的classifier.py
示例脚本中看到向分类器提供多个图像的示例。
你基本上需要让transformed_image
成为一个4D数组,不同的图像沿着第0轴堆叠。