我有PySpark的示例作业,它是PageRank算法的一个版本。 代码如下:
from __future__ import print_function
from operator import add
import timeit
from pyspark.sql import SparkSession
# Normalize a list of pairs(url, rank) to 1
def normalize(ranks):
norm = sum([rank for u, rank in ranks])
ranks = [(u, rank / norm) for (u, rank) in ranks ]
return sorted(ranks, key=lambda x: x[1], reverse=True)
def pagerank_2(edgeList, n, niter):
# Loads all URLs from input file and initialize their neighbors.
m = edgeList.groupByKey().cache()
s = 0.85
# Loads all URLs with other URL(s) link to from input file
# and initialize ranks of them to one.
q = spark.sparkContext.range(n).map(lambda x: (x, 1.0)).cache()
r = spark.sparkContext.range(n).map(lambda x: (x, 0.0)).cache()
# Calculates and updates URL ranks continuously
# using PageRank algorithm.
for iteration in range(niter):
# Calculates URL contributions to the rank of other URLs.
# Add URL ranks based on neighbor contributions.
# Do not forget to add missing values in q and set to 0.0
q = q.fullOuterJoin(m)\
.flatMap(lambda x: (x[1][1] and [(u, x[1][0]/len(x[1][1])) for u in x[1][1]]) or [])\
.reduceByKey(add)\
.rightOuterJoin(r)\
.mapValues(lambda x: (x[0] or 0)*s + (1-s))
print("iteration = ", iteration)
# Collects all URL ranks and dump them to console after normalization
ranks = normalize(q.collect())
print(ranks[0:10])
if __name__ == "__main__":
spark = SparkSession\
.builder\
.master('local[*]')\
.appName("SparkPageRank")\
.config('spark.driver.allowMultipleContexts', 'true')\
.config('spark.sql.warehouse.dir', 'file:///C:/Home/Org/BigData/python/BE4/') \
.config('spark.sql.shuffle.partitions', '10')\
.getOrCreate()
spark.sparkContext.setLogLevel('WARN')
g = [(0, 1), (0, 5), (1, 2), (1, 3), (2, 3),
(2, 4), (2, 5), (3, 0), (5, 0), (5, 2)]
n = 6
edgeList = spark.sparkContext.parallelize(g)
print(timeit.timeit('pagerank_2(edgeList, 6, 10)', number=1, globals=globals()))
节点编号从0到n-1。 edgeList参数是一个RDD,它包含一对节点(也就是边缘)列表。
我在本地模式下在Windows 10(Anaconda,Spark 2.1.0,winutils)上运行它。 这项工作分配为2896项任务,这些任务都非常轻。
我的问题是运行时间。 通过上面的例子:
该电脑是笔记本电脑核心i7-4702HQ,16Gb内存,512Gb SSD。 在启动过程中,Windows比Linux慢,但速度慢50倍?肯定有办法减少这种差距吗?
我已为所有受到威胁的文件禁用了Windows Defender:java目录,python目录等。 关于要看什么的任何其他想法?
感谢任何线索。
答案 0 :(得分:0)
也许关键是本地[*] ,这意味着
使用与您的逻辑核心一样多的工作线程在本地运行Spark 机。
尝试使用 local [10]
等