我有以下df:
usersidid clienthostid LoginDaysSumLastMonth LoginDaysSumLast7Days LoginDaysSum
0 9 1 50 7 1728
1 3 1 43 3 1331
2 6 1 98 9 216
3 4 1 10 6 64
4 9 2 64 32 343
5 12 3 45 43 1000
6 8 3 87 76 512
7 9 3 16 3 1200
我想做的是:
对于每个' clienthostid'寻找' usersidid'使用最高的' LoginDaysSum',我检查是否存在两个不同clienthostid中最高的LoginDaysSum的用户ID(例如,usersidid = 9 ia是clienthostid 1,2和3中最高的LoginDaysSum,在行0中因此,4和7)。
在这种情况下,我想选择更高的LoginDaysSum(在示例中它将是1728的行),让我们称之为maxRT。
我想计算maxRT与其他每一行之间的LoginDaysSumLast7Days的比率(例如,它将是行索引7和4)。
如果比率低于0.8,我想放弃该行:
index 4- LoginDaysSumLast7Days_ratio = 7/32< 0.8 //行会掉线!
index 7- LoginDaysSumLast7Days_ratio = 7/3> 0.8 //行将停留!
同样的条件也适用于LoginDaysSumLastMonth。
因此,对于示例,结果将是:
usersidid clienthostid LoginDaysSumLastMonth LoginDaysSumLast7Days LoginDaysSum
0 9 1 50 7 1728
1 3 1 43 3 1331
2 6 1 98 9 216
3 4 1 10 6 64
5 12 3 45 43 1000
6 8 3 87 76 512
7 9 3 16 3 1200
现在,阻碍性能至关重要。 我尝试使用.apply来实现它,但不仅我不能使它正常工作,它也运行得太慢了:(
我的代码到目前为止(请原谅我写的非常错误,我上周才第一次使用SQL,Pandas和Python开始工作,我学到的一切都来自我在这里找到的例子^ _ ^) :
df_client_Logindayssum_pairs = df.merge(df.groupby(['clienthostid'], as_index=False, sort=False)['LoginDaysSum'].max(),df, how='inner', on=['clienthostid', 'LoginDaysSum'])
UsersWithMoreThan1client = df_client_Logindayssum_pairs.groupby(['usersidid'], as_index=False, sort=False)['LoginDaysSum'].count().rename(columns={'LoginDaysSum': 'NumOfClientsPerUesr'})
UsersWithMoreThan1client = UsersWithMoreThan1client[UsersWithMoreThan1client.NumOfClientsPerUesr >= 2]
UsersWithMoreThan1client = df_client_Logindayssum_pairs[df_client_Logindayssum_pairs.usersidid.isin(UsersWithMoreThan1Device.loc[:, 'usersidid'])].reset_index(drop=True)
UsersWithMoreThan1client = UsersWithMoreThan1client.sort_values(['clienthostid', 'LoginDaysSum'], ascending=[True, False], inplace=True)
UsersWithMoreThan1client = ttm.groupby(['clienthostid'], sort=False)['LoginDaysSumLast7Days'].apply(lambda x: x.iloc[0] / x.iloc[1]).reset_index(name='ratio')
UsersWithMoreThan1client = UsersWithMoreThan1client[UsersWithMoreThan1client.ratio > 0.8]
UsersWithMoreThan1client = ttm.groupby(['clienthostid'], sort=False)['LoginDaysSumLastMonth'].apply(lambda x: x.iloc[0] / x.iloc[1]).reset_index(name='ratio2')
UsersWithMoreThan1client = UsersWithMoreThan1client[UsersWithMoreThan1client.ratio2 > 0.8]
非常感谢有关如何做的任何建议
谢谢
答案 0 :(得分:2)
我相信这就是你所需要的:
# Put the index as a regular column
data = data.reset_index()
# Find greates LoginDaysSum for each clienthostid
agg1 = data.sort_values(by='LoginDaysSum', ascending=False).groupby(['clienthostid']).first()
# Collect greates LoginDaysSum for each usersidid
agg2 = agg1.sort_values(by='LoginDaysSum', ascending=False).groupby('usersidid').first()
# Join both previous aggregations
joined = agg1.set_index('usersidid').join(agg2, rsuffix='_max')
# Compute ratios
joined['LoginDaysSumLast7Days_ratio'] = joined['LoginDaysSumLast7Days_max'] / joined['LoginDaysSumLast7Days']
joined['LoginDaysSumLastMonth_ratio'] = joined['LoginDaysSumLastMonth_max'] / joined['LoginDaysSumLastMonth']
# Select index values that do not meet the required criteria
rem_idx = joined[(joined['LoginDaysSumLast7Days_ratio'] < 0.8) | (joined['LoginDaysSumLastMonth_ratio'] < 0.8)]['index']
# Restore index and remove the selected rows
data = data.set_index('index').drop(rem_idx)
data
中的结果是:
usersidid clienthostid LoginDaysSumLastMonth LoginDaysSumLast7Days LoginDaysSum
index
0 9 1 50 7 1728
1 3 1 43 3 1331
2 6 1 98 9 216
3 4 1 10 6 64
5 12 3 45 43 1000
6 8 3 87 76 512
7 9 3 16 3 1200