我在C中编写一个脚本来打印出pascals三角形,所以我为factorial编写了一个函数,然后将变量c =变为二项式展开式,这直到n = 13行产生输出:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1
1 11 55 165 330 462 462 330 165 55 11 1
1 12 66 220 495 792 924 792 495 220 66 12 1
0 4 24 88 221 399 532 532 399 221 88 24 4 0
最后一行是n = 13.我最初认为它是破坏的,因为对于32位整数,因子将是大的但是64位整数仍然存在误差...
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
int64_t factorial(int k);
int main(int argc, char **argv)
{
int c, n, r, i;
if (argc < 2) {
printf("[function]: %s [number of lines to print]", argv[0]);
return -1;
}
n = atoi(argv[1]);
for (i = 0; i <= n; i++) {
for (r = 0; r <= i; r++) {
c = (int) factorial(i) / (factorial(r) * factorial((i - r)));
printf("%d ", c);
}
printf("\n");
}
return 1;
}
int64_t factorial(int k)
{
int64_t j;
if (k == 0 || k == 1)
return 1;
int n = k;
for (j = k; n > 1;)
j = j * --n;
return j;
}
我非常感谢对此有所帮助...
答案 0 :(得分:8)
你的计算甚至在64位时都失败了,因为你用脚趾射击自己的脚(它很痛):
c = (int) factorial(i) / (factorial(r) * factorial((i - r)));
被解析为
c = ((int)factorial(i)) / (factorial(r) * factorial((i - r)));
只需移除演员表或将其放在结果上:
c = (int)(factorial(i) / (factorial(r) * factorial(i - r)));
请注意,您的factorial
功能过于复杂,这是一个更简单的版本:
int64_t factorial(int n) {
int64_t x;
for (x = 1; n > 1; n--) {
x *= n;
}
return x;
}
另请注意,您不需要计算完整的阶乘,此版本为29,并且可以通过一些工作进一步改进:
#include <stdio.h>
#include <stdlib.h>
long long binomial(int n, int p) {
int q;
long long x;
if (p < n - p)
p = n - p;
q = n - p;
for (x = 1; n > p; n--)
x *= n;
for (; q > 1; q--)
x /= q;
return x;
}
int main(int argc, char **argv)
{
int n, r, i;
if (argc < 2) {
printf("[function]: %s [number of lines to print]", argv[0]);
return -1;
}
n = atoi(argv[1]);
for (i = 0; i <= n; i++) {
for (r = 0; r <= i; r++) {
printf("%lld ", binomial(i, r));
}
printf("\n");
}
return 0;
}
最后,如果允许使用数组,可以进一步简化Pascal三角形的计算,因为每个系数是它上面的那个系数和那个系数左边的系数的总和:
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char **argv) {
int n, r, i;
if (argc < 2) {
printf("[function]: %s [number of lines to print]", argv[0]);
return -1;
}
n = atoi(argv[1]);
long long coeff[n + 1];
coeff[0] = 1;
for (r = 1; r <= n; r++) {
coeff[r] = 0;
}
for (i = 0; i <= n; i++) {
for (r = i; r > 0; r--) {
coeff[r] += coeff[r - 1];
}
for (r = 0; r <= i; r++) {
printf("%lld ", coeff[r]);
}
printf("\n");
}
return 0;
}
答案 1 :(得分:4)
c = (int) factorial(i) / (factorial(r) * factorial((i - r)));
这并不是你认为它做的。尝试
c = (int) (factorial(i) / (factorial(r) * factorial((i - r))));