有15M行的表格可以保存用户的收件箱数据
user_id | integer | not null
subject | character varying(255) | not null
...
last_message_id | integer |
last_message_at | timestamp with time zone |
deleted_at | timestamp with time zone |
简而言之,这是一个慢查询:
SELECT *
FROM dialogs
WHERE user_id = 1234
AND deleted_at IS NULL
LIMIT 21
完整查询 (删除了不相关的字段)
SELECT "dialogs"."id", "dialogs"."subject", "dialogs"."product_id", "dialogs"."user_id", "dialogs"."participant_id", "dialogs"."thread_id", "dialogs"."last_message_id", "dialogs"."last_message_at", "dialogs"."read_at", "dialogs"."deleted_at", "products"."id", ... , T4."id", ... , "messages"."id", ...,
FROM "dialogs"
LEFT OUTER JOIN "products" ON ("dialogs"."product_id" = "products"."id")
INNER JOIN "auth_user" T4 ON ("dialogs"."participant_id" = T4."id")
LEFT OUTER JOIN "messages" ON ("dialogs"."last_message_id" = "messages"."id")
WHERE ("dialogs"."deleted_at" IS NULL AND "dialogs"."user_id" = 9069)
ORDER BY "dialogs"."last_message_id" DESC
LIMIT 21;
说明:
Limit (cost=1.85..28061.24 rows=21 width=1693) (actual time=4.700..93087.871 rows=17 loops=1)
-> Nested Loop Left Join (cost=1.85..9707215.30 rows=7265 width=1693) (actual time=4.699..93087.861 rows=17 loops=1)
-> Nested Loop (cost=1.41..9647421.07 rows=7265 width=1457) (actual time=4.689..93062.481 rows=17 loops=1)
-> Nested Loop Left Join (cost=0.99..9611285.66 rows=7265 width=1115) (actual time=4.676..93062.292 rows=17 loops=1)
-> Index Scan Backward using dialogs_last_message_id on dialogs (cost=0.56..9554417.92 rows=7265 width=102) (actual time=4.629..93062.050 rows=17 loops=1)
Filter: ((deleted_at IS NULL) AND (user_id = 9069))
Rows Removed by Filter: 6852907
-> Index Scan using products_pkey on products (cost=0.43..7.82 rows=1 width=1013) (actual time=0.012..0.012 rows=1 loops=17)
Index Cond: (dialogs.product_id = id)
-> Index Scan using auth_user_pkey on auth_user t4 (cost=0.42..4.96 rows=1 width=342) (actual time=0.009..0.010 rows=1 loops=17)
Index Cond: (id = dialogs.participant_id)
-> Index Scan using messages_pkey on messages (cost=0.44..8.22 rows=1 width=236) (actual time=1.491..1.492 rows=1 loops=17)
Index Cond: (dialogs.last_message_id = id)
Total runtime: 93091.494 ms
(14 rows)
OFFSET
未使用user_id
字段有索引。 deleted_at
上的索引。部分索引(... WHERE deleted_at IS NULL
)也无济于事。索引列表:
Indexes:
"dialogs_pkey" PRIMARY KEY, btree (id)
"dialogs_deleted_at_d57b320e_uniq" btree (deleted_at) WHERE deleted_at IS NULL
"dialogs_last_message_id" btree (last_message_id)
"dialogs_participant_id" btree (participant_id)
"dialogs_product_id" btree (product_id)
"dialogs_thread_id" btree (thread_id)
"dialogs_user_id" btree (user_id)
目前我正在考虑仅查询最近的数据(即具有适当索引的... WHERE last_message_at > <date 3-6 month ago>
(BRIN?)。
加快此类查询的最佳做法是什么?
答案 0 :(得分:1)
发表在评论中:
首先在(user_id, last_message_id)
上创建条件为WHERE deleted_at IS NULL
根据你的回答,这似乎非常有效: - )
答案 1 :(得分:0)
所以,这是我尝试的解决方案的结果
1)索引 @interface ViewController (){
int i;
NSTimer *myTimer;
}
@end
@implementation ViewController
- (void)viewDidLoad {
[super viewDidLoad];
myTimer = [NSTimer scheduledTimerWithTimeInterval:0.5
target:self
selector:@selector(setData)
userInfo:nil
repeats:YES];
i = 0;
}
-(void)setData{
_totalEffort.text=[NSString stringWithFormat:@"%d",i];
i = i + 1;
if(i == 100){
[myTimer invalidate];
myTimer = nil;
}
}
在极少数情况下使用,具体取决于(user_id) WHERE deleted_at IS NULL
条件中的某些值user_id
。大多数情况下,查询必须像以前一样过滤掉行。
2)最大的加速是使用
WHERE user_id = ?
索引。虽然它比其他测试索引大2.5倍,但它一直在使用并且速度非常快。这是由此产生的查询计划
(user_id, last_message_id) WHERE deleted_at IS NULL
谢谢@jcaron。你的建议应该是一个公认的答案。