在反射线上用矩阵反映2d点

时间:2017-01-07 20:20:39

标签: c# matrix

给定一条任意反射线,你如何用矩阵反映一组点?我尝试了以下但我无法让它工作:

  1. 翻译系统,使反射线的P1位于 原点

  2. 旋转系统,使反射线平行于Y

  3. 执行Y轴反射

  4. 撤消轮播

  5. 撤消翻译
  6. Iam试图在C#中为我编写一个方法来执行此操作,基本上我给它了2行,我得到了矩阵。

2 个答案:

答案 0 :(得分:1)

there is a formula for reflecting about any line through the origin后不需要轮换。让(a,b)(c,d)在反射线上任意两个点。假设您想要反映的是(x,y)

  1. 翻译坐标,以便(a,b)成为原点。然后(x,y)变为(x-a,y-b)。这一步只是矢量减法。
  2. 反映。这是您需要矩阵的地方。您将矩阵乘以步骤1中的平移向量。您的结果将是另一个向量(2乘1矩阵)。
  3. 将坐标转换回原始系统。这是步骤1的反转,即这是向量加法,它只是撤消步骤1中的向量减法。在此步骤中,您只需将(a,b)添加到步骤2的结果中。
  4. 步骤2的矩阵是:

    H(θ) = [cos(2θ)   sin(2θ)]
           [sin(2θ)  -cos(2θ)]
    

    在矩阵中,θ是(平移的)反射线与正x轴形成的角度。只要ac不相等,您就可以通过评估来找到θ

    θ = arctangent( (d-b) / (c-a) )
    

    您将获得严格在-π/2π/2之间的值。如果a = c,即反射线是垂直的,那么只需取θ = π/2。虽然如果反射线是垂直的(或水平的,在这种情况下是θ = 0),那么你可以使用众所周知的反射矩阵来反射y轴或x轴。

    这几乎列出了查找和使用矩阵的整个过程。听起来你所要求的就是找到反射矩阵。我不太清楚C#在答案中使用它,但这里是伪代码:

    // (a,b) and (c,d) are any two distinct points on the reflection line
    getMatrix(double a, double b, double c, double d)
        double x11, x12, x21, x22;  // Elements of the reflection matrix
    
        if a == c  // If the reflection line is vertical
            x11 = -1; x12 = 0; x21 = 0; x22 = 1;
        else if b == d  // If the reflection line is horizontal
            x11 = 1; x12 = 0; x21 = 0; x22 = -1;
        else
            double θ = arctangent( (d-b) / (c-a) );
    
            x11 = cos(2 * θ);
            x12 = sin(2 * θ);
            x21 = x12;  // sin(2 * θ) again
            x22 = -x11;  // -cos(2 * θ)
        end if
    
        return Matrix(x11, x12, x21, x22);
        /*  The above line returns a matrix with the following entries:
              [ x11  x12 ]
              [ x21  x22 ]
        */
    

    这是使用上述伪代码的示例伪代码:

    // Reflect (x,y) over the line given by the points (a,b) and (c,d)
    reflectPoint(double x, double y, double a, double b, double c, double d)
        Matrix reflector = getMatrix(a, b, c, d);
        Vector v1 = new Vector(x-a, x-b);  // This is Step 1
        Vector v2 = new Vector(a, b);      // This is so we can do Step 3 later
    
        return reflector * v1 + v2;  // v1 already has Step 1 done
                                     // reflector * v1 is Step 2
                                     // + v2 is Step 3
    

    有更有效的方法可以执行上述操作(例如,检查给定点之一(a,b)(c,d)是否已成为原点),但上述内容仍应有效。

答案 1 :(得分:0)

修复错误之后我在这里制作了我的代码:

private Transformer2D Reflect(Vector2D p1, Vector2D p2)
{
        var translationMatrix = new TranslateTransformation2D(new Vector2D(0, 0) - p1);
        var inverseTranslationMatrix = new TranslateTransformation2D(p1);
        var translatedP2 = translationMatrix.Transform(p2); //What p2 would be if p1 of the line was translated to the origin.
        var angleWithYaxis = new Vector2D(0, 1).AngleBetweenTwoVectors(translatedP2);
        var rotationMatrix = new RotationTransformation2D(-angleWithYaxis * RhinoMath.Deg2Rad);
        var inverseRotationMatrix = new RotationTransformation2D(angleWithYaxis * RhinoMath.Deg2Rad);
        var reflectionMatrix = new ScaleTransformation2D(-1, 1);
        return new Transformer2D(translationMatrix, rotationMatrix, reflectionMatrix, inverseRotationMatrix, inverseTranslationMatrix);
}

我只使用抽象矩阵的类:

public class TranslateTransformation2D : MatrixTransformation2DBase
{
    public TranslateTransformation2D(Vector2D translation)
    {
        TransformationMatrix = Matrix3x3.CreateTranslationMatrix(translation.X, translation.Y);
    }

    public TranslateTransformation2D(float x, float y)
    {
        TransformationMatrix = Matrix3x3.CreateTranslationMatrix(x, y);
    }
}

这就是Matrix3x3类的样子:

public class Matrix3x3 : Matrix
{
    public Matrix3x3(double m11, double m12, double m13,
                     double m21, double m22, double m23,
                     double m31, double m32, double m33)
    {
        Rows = 3;
        Cols = 3;
        Mat = new double[Rows * Cols];
        Mat[0] = m11;
        Mat[1] = m12;
        Mat[2] = m13;

        Mat[3] = m21;
        Mat[4] = m22;
        Mat[5] = m23;

        Mat[6] = m31;
        Mat[7] = m32;
        Mat[8] = m33;
    }

    public static Matrix3x3 CreateTranslationMatrix(double x, double y)
    {
        return new Matrix3x3(1, 0, x,
                             0, 1, y,
                             0, 0, 1);
    }

    public static Matrix3x3 CreateScaleMatrix(double x, double y)
    {
        return new Matrix3x3(x, 0, 0,
                             0, y, 0,
                             0, 0, 1);
    }

    public static Matrix3x3 CreateIdentityMatrix()
    {
        return new Matrix3x3(1, 0, 0,
                             0, 1, 0,
                             0, 0, 1);
    }

    public static Matrix3x3 CreateRotationMatrix(double radians)
    {
        var cos = Math.Cos(radians);
        var sin = Math.Sin(radians);

        return new Matrix3x3(cos, -sin, 0,
                             sin, cos, 0,
                             0, 0, 1);

    }

Transformer2D类在这里很特别,因为它只是将所有变换组合成一个矩阵,所以我们只需要应用这个矩阵来获得所有的变换:

public class Transformer2D : MatrixTransformation2DBase
{
    public Transformer2D(params IMatrixTransformation2D[] transformations)
    {
        for (int i = transformations.Length - 1; i >= 0; i--)
        {
            var matrixTransformation2D = transformations[i];
            if (TransformationMatrix != null)
            {
                TransformationMatrix = TransformationMatrix * matrixTransformation2D.TransformationMatrix;
            }
            else
            {
                TransformationMatrix = matrixTransformation2D.TransformationMatrix;
            }
        }
    }
}

MatrixTransformation2DBase类

public abstract class MatrixTransformation2DBase : IMatrixTransformation2D
{
    public Matrix3x3 TransformationMatrix { get; protected set; }

    public Vector2D Transform(Vector2D vector2Din)
    {
        return vector2Din*TransformationMatrix;
    }
}

我可能会在一些地方让它变得更快,但我的想法是我不必再担心矩阵本身,除非我想要一些新型的转换。

对于那些想知道我在内部使用什么矩阵类的人:https://github.com/darkdragon-001/LightweightMatrixCSharp

我所做的就是围绕这一点写下一些节奏。